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“We may as well cut out group theory. [It] will never be any use in physics.” – James Jeans
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§1 Introduction

§1.1 Group Theory?

You may be wondering what it is. Here’s a definition from Wikipedia:

Definition 1.1 (Group Theory) — Group theory studies the algebraic structures known as groups.

The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields,
and vector spaces, can all be seen as groups endowed with additional operations and axioms.

§1.2 Remarks on the Authors

The two authors, Emma Cardwell and Matthew Ho are actually not a part of Euclid’s Orchard. They
taught a class on Group Theory back in June, and it was decided that some of their slides could be made into a
handout, to boost the popularity of their work. The hope is that through this article you will find that group
theory, or more generally, higher level math, is not something to be feared. Dipping your toes into the water
of group theory won’t hurt you, and through Euclid’s Orchard we hope you’ll see that. Thank you to both
authors!

§2 Sets

§2.1 Notation

A set is a well defined collection of objects (numbers, functions, colors, shapes, beautifully-designed presentation
slides, etc).1 Sets can have a finite or infinite number of elements, and the order of the elements doesn’t matter.
One way to define specific sets is by listing the elements in the set:

• {red, orange, yellow, green, blue,purple}

• {. . . ,−2,−1, 0, 1, 2, . . .}

• {1, 2, 3, 4, 5}

Here’s some notation that might be helpful to know:
2 ∈ X means 2 is an element of set X.
f : X → Y means f is a function from set X to set Y . (Its imputs are from set X and its outputs are in set

Y .)

Example 2.1

Let set X = {1, 2, 4} and set Y = {a, b, c, d}. We can define a function f : X → Y as f(1) = a, f(2) = b,
and f(4) = b. An example of something that is NOT a function f : X → Y would be letting f(1) = a,
f(2) = b, and f(4) = g, because g 6∈ Y (g is not an element of set Y ).

We can also define sets in terms of the properties that their elements satisfy. Some sets even have special
names and symbols. {. . . ,−2,−1, 0, 1, 2, . . .} is the set of integers, and it is commonly denoted as Z. {1, 2, 3, 4, 5}
can be written as {n ∈ Z : 0 < n < 6}, meaning “elements of the set of integers such that they are greater than
0 and less than 6”.

1This is an informal definition of a set. There are different types of axiomatic set theory which rely on different sets of axioms
to define sets and their properties. One of the most common systems is the Zermelo-Fraenkel axioms, which form the basis
of Zermelo-Fraenkel set theory. You can read the Wolfram page about the Zermelo-Frankel Axioms for more information:
https://mathworld.wolfram.com/Zermelo-FraenkelAxioms.html.
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§2.2 Direct Product

The Direct Product of two sets A and B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B. Using
set notation,

A×B = {(a, b) : a ∈ A and b ∈ B} (1)

It is important to note that A×B is NOT equal to B ×A, unless A = B.

Example 2.2

Let set A = {1, 2, 4} and set B = {7, a,hello}. The direct product of A and B equals:

A×B = {(1, 7), (1, a), (1,hello), (2, 7), (2, a), (2,hello), (4, 7), (4, a), (4, hello)}

§2.3 Binary Operation

A Binary Operation on a nonempty set is a map f : A×A→ A such that f(a1, a2) is defined for every pair
of elements a1, a2 ∈ A and f(a1, a2) is an element in A.

Example 2.3

Arithmetic operations such as addition and multiplication are binary operations on the set of integers.
Division is not a binary operation on the set of integers because the result of the division of two integers
a, b is not always an integer for every pair of a, b. Division is a binary operation for the set of rationals
excluding 0 because the division of two rational numbers always produces a rational number. (We exclude 0
because dividing by 0 causes problems).

But really, a binary operation can be anything we define it to be, as long as it takes 2 inputs and generates 1
output that is in the same set.2

Example 2.4

Let’s define the binary operation x · y. We can let x · y = a+ 2b, where x, y ∈ Z and a is the tens digits of x
and b is the sum of the digits in y (and + is addition as we know it). The result will always be an integer,
so this function is a binary operation on the set of integers.

§3 Groups

§3.1 Definitions

A group is a set, G, together with a binary operation (·) such that the following are satisfied:

1. Closure: x · y ∈ G for all x, y ∈ G.

2. Associativity: (x · y) · z = x · (y · z) for all x, y, z ∈ G.

3. Identity: For every x ∈ G, there exists an element e ∈ G such that e · x = x · e = x.

4. Inverses: For every x ∈ G, there exists an element y ∈ G such that x · y = y · x = e.

Note: We often denote groups simply by their sets, ex: G instead of (G, ·).
2About notation: there are many ways to represent a binary operation. One way is similar to defining a function with two inputs:
f(a, b), g(a, b), h(a, b), etc. Another way is by defining an operator between two elements: a · b, a ◦ b, a ? b, etc.
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Example 3.1

The set of integers under the binary operation of addition form a group. To show this, let’s check that the
four conditions are satisfied:

1. Closure: The sum of any two integers always produces another integer.

2. Associativity: Addition for integers satisfies the associative property.

3. Identity: 0 is the identity. For any integer n, 0 + n = n+ 0 = n.

4. Inverse: The negative version of any integer is its inverse. For an integer n, n+ (−n) = (−n) + n = 0.

An Abelian group is a group, G, such that, for all x, y ∈ G, x · y = y · x. (Where · is the binary operation).
Basically, an Abelian group is a group where the binary operation is commutative.

§3.2 Triangle Transformations Activity

There are 6 symmetries of an equilateral triangle:

We call the first transformation e, because we often use e to denote the identity. We can represent the
remaining 5 transformations in terms of a counterclockwise rotation by 120 degrees, which we will call ρ, and a
reflection across the vertical line of symmetry, which we will denote τ . Here are the transformations from the
diagram above represented in terms of e, ρ and τ :

Transformation Alternate representation

1 e
2 ρ
3 ρ2 (this means apply ρ twice)
4 τ
5 ρτ
6 ρ2τ

It turns out that these 6 transformations form a group, with the composition of transformations as the binary
operation. Let’s check the four conditions:

1. Closure: The composition of two transformations is another transformation.

2. Associativity: A bit harder to check. You can play around with an equilateral triangle of your own to
convince yourself3.

3. Identity: We have an identity element, e, which when composed with any other transformation, results in
that other transformation.

3Technically, it is inherited because the composition of mappings is an associative binary operation, and our composition of
transformations is a composition of mappings. Proving that the composition of mappings is associative requires a bit more set
theory than we covered, but if you’re interested, here’s a proof: https://proofwiki.org/wiki/Composition_of_Mappings_is_

Associative.
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4. Inverses: Intuitively, we must have inverses because we can undo every transformation sequentially.
The inverse of ρis ρ2, and the inverse of τ is itself. For a more rigorous justification, check the group
multiplication table (below).

This group actually has a name: the Dihedral group of order 3, or D3.

§3.3 Group Multiplication Tables

These are sometimes known as Cayley tables. A group multiplication table is exactly what it sounds like; a
table that shows what the result of each possible binary operation between two elements in the group. When
constructing/reading a group multiplication table, the element in the row reference is applied first, then the
element in the column reference. Here’s the group multiplication table for D3:

e ρ ρ2 τ ρτ ρ2τ

e e ρ ρ2 τ ρτ ρ2τ
ρ ρ ρ2 e ρτ ρ2τ τ
ρ2 ρ2 e ρ ρ2τ τ ρτ
τ τ ρ2τ ρτ e ρ2 ρ
ρτ ρτ τ ρ2τ ρ e ρ2

ρ2τ ρ2τ ρτ τ ρ2 ρ e

So, instead of flipping and rotating paper equilateral triangles to figure out the result of a composition of
transformations, we can calculate their result instead! For example, to find the result of tau ◦ ρ2τ , see the box
that corresponds to the ρ2τ row and τ column in the group multiplication table. Note that we evaluate from
right to left. Since each element represents a transformation, we can think of applying the binary operator as
the composition of functions here, like how (f ◦ g)(x) means f(g(x)). For example, τ ◦ ρ2τ means apply ρ2τ
first, then τ .

Example 3.2

As a more complicated example, let’s find the result for the following sequence of transformations: 5 - 2 - 4 -
3:

Written in terms of ρand τ , we have:
ρ2 ◦ τ ◦ ρ ◦ ρτ

Now, let’s evaluate!

ρ2 ◦ τ ◦ ρ ◦ ρτ = ρ2(τ(ρ(ρτ)))

Associativity means that we can ignore the parenthesis, though we still have to evaluate from right to left:

ρ2 ◦ τ ◦ ρ ◦ ρτ = ρ2(τ(τ))

= ρ2(e)

= ρ2

Thus, the result of the sequence of transformations 5 - 2 - 4 - 3, is equivalent to transformation 2.

§4 Moduli

We define a mod b to be the remainder when a is divided by b. We also say that a ≡ x mod b if a divided by b
gives the same remainder as when x is divided by b.

8
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Example 4.1

5 ≡ 2 mod 3

7 ≡ 27 mod 4

6 ≡ 2 mod 4

Note that moduli add, subtract, and multiply nicely! Namely,

(a mod x) + (b mod x) ≡ (a+ b) mod x (2)

(a mod x)− (b mod x) ≡ (a− b) mod x (3)

(a mod x) · (b mod x) ≡ (a · b) mod x (4)

However, they do not divide nicely. Sad.
It turns out that division normally works because we have inverses. For example, division by 0 fails because 0

does not have a multiplicative inverse. If we are careful and make sure the mod we’re using is prime (that is, the
n in mod n is prime), we can actually do division! From here forwards, p will denote a prime.

Theorem 4.2 (Properties of (Z/pZ)∗)

We have unique inverses in (Z/pZ)∗. Moreover, this is a group!

Proof. What is (Z/pZ)∗? This is the set {1, . . . , p− 1} combined with the binary operation of multiplication
modulo p.

Let’s first try to check if this is a group.

1. Closure: This is closed because (a mod x) · (b mod x) ≡ (a · b) mod x.

2. Associativity: This “inherits” associativity from normal multiplication.

3. Identity: 1 is the identity.

4. Inverses: This is harder.

Now, we need to show that every element has an inverse. First, we’ll introduce a new theorem:

Theorem 4.3 (Pigeonhole Principle)

If we put n+ 1 objects into n groups, at least one group must contain multiple objects

We’ll give this theorem without proof, you can look up a proof online if you’re curious, but the theorem is very
intuitive. Basically, because the average number of objects per group is greater than 1, this implies that at least
one group must have 2 objects.

Great, let’s use that now! Consider any element x in the group, we’ll show it has an inverse. First, consider
the set S = {x, x · 2, . . . , x · (p− 1)}. We’ll first show that every element inside this set is distinct.

Assume for the sake of contradiction that two elements, x · a and x · b (with a < b, are equal. Then we
have that x · a − x · b = x · (a − b) = 0. Notice that this means that p must divide x · (a − b). But p is
prime! So this means that either p divides x, or p divides a − b. But p cannot divide x, because x belongs

9
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in the set S, so 0 < x < p. Also, p cannot divide a−b, because 0 < a < b < p. Therefore, we have a contradiction.

Now, we can conclude that all elements within S are different. Assume for the sake of contradiction that none
of these values are 1, the identity. If this were true, then we would have p− 1 “objects” inside the p− 2 values,
or “groups.” But by the Pigeonhole principle, we have a contradiction, because we just proved each of these
values are unique! Therefore, exactly one of the values inside S is 1, so we have (unique) inverses for every
element inside (Z/pZ)∗.

Now, we’ve proved all four properties, so we conclude (Z/pZ)∗ is a group! Yay!

Great, now we’ll move onto Wilson’s theorem!

Definition 4.4 (Factorial) — x!, or “x factorial”, is x · (x− 1) · · · 2 · 1. For example, 3! = 3 · 2 · 1 = 6.

Theorem 4.5 (Wilson’s Theorem)

(p− 1)! ≡ −1 mod p

Proof. First, we note that 1! = 1 ≡ −1 mod 2. From here, we assume p is an odd prime, since 2 is the only
even prime.

Claim 4.6 — The only two elements which are their own inverse are 1 and p− 1.

Why? Because any element x which is its own inverse satisfies x2 ≡ 1 mod p, so x2 − 1 ≡ 0 mod p. Because p
is a prime, p either divides x+ 1 or x− 1, which immediately implies the claim

Now, take any element x which has an inverse x−1 6= x. We proved earlier that inverses in (Z/pZ)∗ are unique
(in fact, one of the exercises this week is to prove that in general, inverses are unique in all groups). Therefore,
we can divide all elements which are not 1 or p− 1 into pairs, such that every element in the pair is the other
element’s inverse.

Here is the cool part. Consider (p− 1)! = (p− 1) · (p− 2) · · · 2 · 1. Because multiplication is commutative (our
group is abelian!) we can rearrange all the numbers here that are not 1 or p− 1 into these pairs that we just
created, and the product of every pair is just going to be 1 mod p! Now, (p − 1)! ≡ 1 · p − 1 ≡ −1 mod p!
Boom!

Ok, we’re going to finish off this week’s material with a couple of definitions.

Definition 4.7 (Order of a Group) — The order of a group G is the number of elements in a group. This
is also known as the cardinality of a group, and can be denoted as ord(G) or |G|.

Definition 4.8 (Order of an Element in a Finite Group) — The order of an element x in a finite group
G is the minimum exponent n such that xn = e. This can be denoted as ord(x)

It turns out the set {e, x, x2, . . . , xord(x)−1} is a group, and it’s called 〈x〉 (actually it’s a subgroup! We’ll talk
about that more next week). You can prove this for fun! This actually implies that ord(x) = | < x > |.

Wait, but why is it true that the order of an element in a finite group always exists? (Bonus material)

10
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Theorem 4.9 (Orders in a Finite Group)

Every element in a finite group has an order.

Proof. Take an element x in a group G. Define n = |G|. Consider the set S = {e = x0, x, x2, . . . , xn}.
Because there are n + 1 elements inside this set S, and only n possible values, two of these elements must
be the same by the Pigeonhole Principle. Assume these elements are xa, xb for a < b. Then xa = xb implies(
x−1

)a · xa =
(
x−1

)a · xb = xb−a = e. Because 0 < b− a < b < n, we have that e must be inside S, and inside G,
which finishes!

§5 Group Homomorphisms

§5.1 A Brief Aside for Proofs

Let’s try a proof first because it’s important.

Theorem 5.1 (Identity is Unique)

Every group has a unique identity element.

Proof. Suppose that e1, e2 are both identity elements of the same group. Then,

e1 = e1e2 = e2 (5)

e1 = e2 (6)

Thus e1, e2 must be the same element.

§5.2 Back to Homomorphisms

Definition 5.2 (Group Homomorphism) — Let (G, �) and (H, ?) be groups. A group homomorphism
from G to H is a function f : G→ H such that, for all g1, g2 ∈ G, we have f(g1 � g2) = f(g1) ? f(g2).

Example 5.3

The function p : (R,+)→ (R+, ·) is a group homomorphism, where p(x) = ex for all x ∈ (R,+).

Solution. Consider x, y ∈ (R,+). To show that p is a homomorphism, we must show that p(x+ y) = p(x) · p(y):

p(x+ y) = e(x+y) (7)

= ex · ey = p(x) · p(y) (8)

Example 5.4

The function f : (Z,+)→ (Z,+) is a group homomorphism, where f(x) = 5x for all x ∈ (Z,+).

Solution. Consider x, y ∈ (Z,+). To show that f is a homomorphism, we must show that f(x+y) = f(x) +f(y):

f(x+ y) = 5(x+ y) (9)

= 5x+ 5y = f(x) + f(y) (10)

11



Emma Cardwell and Matthew Ho (January 6, 2021) Group Theory

§6 Kernels and Images

§6.1 Kernels

Definition 6.1 (Kernel) — Let f : G → H be a group homomorphism. The kernel of f is defined as
Ker(f) = {g ∈ G : f(g) = eH}.

More informally, the kernel is the set of all elements in G that get sent to the identity element in H.

Example 6.2

Consider the group homomorphism p : (R,+) → (R+, ·), where p(x) = ex for all x ∈ (R,+). What is
Ker(p)?

Solution. The identity element of (R+, ·) is 1, so Ker(p) consists of all x ∈ (R,+) such that p(x) = ex = 1. The
only solution is x = 0, thus Ker(p) = {0}.

Let’s use Z to denote the integers under the binary operation of addition.

Example 6.3

Consider the group homomorphism φ : Z × Z → Z, where φ(a, b) = a + b for all (a, b) ∈ Z × Z. What is
Ker(φ)?

Solution. The identity element of Z is 0, so Ker(φ) consists of all (a, b) ∈ Z× Z such that φ(a, b) = a+ b = 0.
This condition is satisfied whenever a = −b, thus Ker(φ) = {(a,−a) ∈ Z× Z}.

§6.2 Images

Definition 6.4 (Image) — Let f : G → H be a group homomorphism. The image of f is defined as
Im(f) = {h ∈ H : f(g) = h for some g ∈ G}.

More informally, the image is the set of all elements in H that get mapped to by f .

Example 6.5

Consider the group homomorphism f : Z→ Z, where f(x) = 5x for all x ∈ Z. What is Im(f)?

Solution. Im(f) = {n ∈ Z : 5 | n} = {. . . ,−10,−5, 0, 5, 10, . . .}.

§7 Homomorphisms Proofs

§7.1 Identity

Theorem 7.1 (Homomorphisms Preserve Identity)

Let (G, �) and (H, ?) be groups, and let f : G→ H be a group homomorphism. Then, f(eG) = eH , where
eG is the identity in G and eH is the identity in H.

12



Emma Cardwell and Matthew Ho (January 6, 2021) Group Theory

Proof. Since f(eG) must be an element of H and inverses are unique,

f(eG) ? [f(eG)]−1 = eH (11)

f(eG � eG) ? [f(eG)]−1 = eH (12)

f(eG) ? f(eG) ? [f(eG)]−1 = eH (13)

f(eG) = eH (14)

Example 7.2

Recall the group homomorphism f : Z→ Z, where f(x) = 5x for all x ∈ Z.

Solution. The identity element in Z is 0. f(0) = 5(0) = 0, which is the identity element in Z.

Example 7.3

Recall the group homomorphism φ : Z× Z→ Z, where φ(a, b) = a+ b for all (a, b) ∈ Z× Z.

Solution. The identity element in Z× Z is (0, 0). φ(0, 0) = 0 + 0 = 0, which is the identity element in Z.

Example 7.4

Recall the group homomorphism p : (R,+)→ (R+, ·) , where p(x) = ex for all x ∈ (R,+).

Solution. The identity element in (R,+) is 0. p(0) = e0 = 1, which is the identity element in (R+, ·).

§7.2 Inverses

Theorem 7.5 (Homomorphisms Preserve Inverses)

Let (G, �) and (H, ?) be groups, and let f : G→ H be a group homomorphism. Then, f(g−1) = [f(g)]−1,
for all g ∈ G.

Proof. Let’s mainpulate eH :

eH = f(eG) (15)

eH = f(g � g−1) (16)

eH = f(g) ? f(g−1) (17)

multiply both sides by [f(g)]−1:

[f(g)]−1 ? eH = [f(g)]−1 ? f(g) ? f(g−1) (18)

[f(g)]−1 = f(g−1) (19)

13
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Example 7.6

Recall the group homomorphism f : Z→ Z, where f(x) = 5x for all x ∈ Z.

Solution. Let’s split it up:

• Finding the inverse first, then applying the homomorphism: Consider some element x ∈ Z. The
inverse of x is −x. f(−x) = 5(−x) = −5x.

• Applying the homomorphism first, then finding the inverse: Let’s find the inverse of f(x).
f(x) = 5x, and the inverse is some element y such that f(x) + y = 0. y = 5x, so [f(x)]−1 = 5x.

Thus, f(−x) = −5x = [f(x)]−1.

Example 7.7

Recall the group homomorphism p : (R,+)→ (R+, ·) , where p(x) = ex for all x ∈ (R,+).

Solution. Let’s split it up:

• Finding the inverse first, then applying the homomorphism: Consider some x ∈ (R,+). The
inverse of x is −x, as x+ (−x) = 0. p(−x) = e−x.

• Applying the homomorphism first, then finding the inverse: p(x) = ex. The inverse of ex is the
element that, when multiplied with ex, equals 1, the identity of (R+, ·). [p(x)]−1 = e−x.

Thus, p(x−1) = e−x = [p(x)]−1.

§8 Subgroups and Cosets

Definition 8.1 (Subgroup) — A subgroup H of a group G is a group that consists of a subset of G
combined with the same binary operation (so it has to obey closure, associativity, inverse, and identity
properties as well).

Example 8.2

The x-axis of R2 is a subgroup, because it’s clearly closed under addition, addition is associative, inverses
clearly exist, the origin is the identity.

Example 8.3

Z/nZ (the integers mod n) is a subgroup of Z (the integers).

Definition 8.4 (Coset) — Take a subgroup H of an abelian group G. Then the cosets of H are defined as
the sets gH = {gh : h ∈ H} (read: the set of all possible products gh, where h is an element of H), where g
can take any value in G.

14
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Example 8.5

The set of numbers that are congruent to 1 mod 5 are a coset of the group of the multiples of 5 under
addition, when we let g = 1 in our definition above.

Example 8.6

Each horizontal line would be a coset, if H is the x-axis in the group G = R2.

§8.1 Properties of Subgroups

1. The identity of a subgroup is equivalent to the identity of the whole group. This is true because every
group has a unique identity.

2. A group is a subgroup of itself.

3. The group consisting only of the identity is also a subgroup of any group.

4. In abelian groups (groups where the binary operation is commutative), there always exists a homomorphism
from the group to each subgroup.

We won’t rigorously prove the last fact, but we’ll talk about it more later. Consider the homomorphism from
f : Z→ Z/nZ, where f is taking a number mod n to be an example.

§8.2 Property of Cosets

Theorem 8.7 (# of Elements of Cosets and Subgroups)

Each coset has the same number of elements as its subgroup, if H is a finite group.

Proof. Note that if gh1 = gh2, then g−1gh1 = g−1gh2 which implies h1 = h2, so every element in H creates a
different element in the coset.

§8.3 Applications

Example 8.8

Let’s say, I have to multiply two really, really large numbers. . . and Emma conveniently has a supercomputer!
So I want to give Emma my two numbers to multiply, but I don’t want her to know my numbers (let’s say,
one of them is my SSN and the other is my password to all of my accounts). What do I do?

Solution. Use homomorphic functions. If I have two positive integers, say p, q, then what we need to do is create
some homomorphism f from Z to some other group G such that f(pq) = f(p)f(q), which is invertable.

So I give Emma f(p) and f(q), and tell her to combine these two values in the group G using her supercomputer.
She then gives me f(p)f(q) = f(pq), and I invert f to find pq. If Emma doesn’t know what f is, or doesn’t
know how to invert it, my inputs are still secret!

Where is homomorphic encryption used?

1. Storing information online, or in the Cloud

2. Elections

3. Secure data (say, biomedical data or DNA or something that’s very personal and private)
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§9 Number Theory

Let’s start by thinking of this without group theory.

§9.1 Fermat’s Little Theorem

Theorem 9.1 (Fermat’s Little Theorem)

If a is a positive integer, and p is a prime number, then ap ≡ a mod p

Example 9.2

For any p, 0p ≡ 0 mod p

Example 9.3

For a = 2, p = 5,

25 ≡ 32 mod 5

≡ 2 mod 5

For the rest of this section, p will denote primes.

§9.2 Combinatorial Proof

Definition 9.4 (Double Counting) — Double counting is the method of counting the same thing in two
different ways.

Let’s use this trick!

• Consider a circular necklace with 5 beads on it. If we can color each bead one of two colors (R or G, for
short), there are 25 possible ways to color the necklace.

• Now, how many ways are there to color this necklace, if we don’t allow the possibility of all beads being
the same color? 25 − 2.

• Here are all possible colorings (not including single-color necklaces):

RRRRG, RRRGR, RRGRR, RGRRR, GRRRR

RRRGG, RRGGR, RGGRR, GGRRR, GRRRG

RRGRG, RGRGR, GRGRR, RGRRG, GRRGR

RRGGG, RGGGR, GGGRR, GGRRG, GRRGG

RGRGG, GRGGR, RGGRG, GGRGR, GRGRG

RGGGG, GGGGR, GGGRG, GGRGG, GRGGG

Wow, we can divide the set of possible colorings into groups of 5. . . coincidence?

• Nope!
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Notice that each coloring is part of a class of colorings, where each “class” has size 5. We can rotate each
coloring to produce all the other colorings in the same class, and there are 4 ways to rotate any coloring
(shift by 1, shift by 2,. . . shift by 4), giving that each class has size 5.

Because 5 is prime, there is no way to shift a coloring by less than 5 and obtain the same coloring. If we
could, that would be bad, because we would be counting some colorings multiple times (it’s why we need 5
to be prime). For example, if we had colorings of length 4, RGRG can be shifted twice to form itself.

This shows that we can partition all these colorings into classes, so we must have that 5 divides the total
number of possible colorings!

• In other words, 5 | 25 − 2, or 25 ≡ 2 mod 5.

Of course, 2 and 5 are not special! In particular, assume we’re trying to color a necklace of length p with a
colors. Then there will be a colorings we need to subtract out (because they’ll only be one color) and so
we’ll obtain ap ≡ a mod p!

§9.2.1 NT Proof

• Define the set S := {1, 2, . . . , p− 1}. Remember, this is a group under multiplication!

Now, take some number a. Look at the set aS = {a, 2a, . . . , a(p− 1)}. Assume that a 6≡ 0 mod p (if a ≡ 0
mod p then trivially ap ≡ 0 mod p ≡ a mod p). Then aS = S

Lemma 9.5

aS = S

Proof. If we have two elements ax ≡ ay mod p, then a(x− y) ≡ 0 mod p, which is impossible. Then all
elements must be distinct, and Pigeonhole implies the conclusion.

• Now, we multiply all the elements inside aS.

a · a(2) · a(3) · · · a(p− 1) = 1 · 2 · 3 · · · (p− 1)

because aS = S, so the product of all the elements in each set modulo p must also be the same.

But because (Z/pZ)∗ is an abelian group, we can rearrange this to:

ap−1 · (p− 1)! ≡ (p− 1)!

But we can cancel out the (p− 1)! (in fact, (p− 1)! ≡ −1 mod p by Wilson’s theorem), which gives us
ap−1 ≡ 1 mod p.

Multiplying both sides by a gives ap ≡ a mod p.

§9.2.2 Euler’s Totient Theorem

The natural generalization of FLT is Euler’s Totient Theorem.

Definition 9.6 (φ) — φ(x) (“phi of x”) is the number of positive integers n smaller than x that are
relatively prime to x (so gcd(x, n) = 1 for each n).

Some examples:

1. φ(6) = 2, because only 1 and 5 are relatively prime to 6.
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2. φ(32) = 16, because all odd numbers 1, 3, . . . , 31 are relatively prime to 32.

3. φ(p) = p− 1 for any prime p, because all numbers 1 . . . p− 1 are relatively prime to p.

It turns out that we can create a formula to calculate the totient function. We’re not going to prove this, but if
you’re curious, you can Google it online. It uses something called the Chinese Remainder Theorem.

Theorem 9.7 (Totient Formula)

If x = pq11 p
q2
2 · · · p

qn
n for primes p1, . . . pn, then φ(x) = x ·

∏n
i=1(1−

1
pi

)

Some examples:

1. 6 = 21 · 31, so φ(6) = 6 · 12 ·
2
3 = 2.

2. p = p1, so φ(p) = p · p−1p = p− 1.

3. 1000 = 23 · 53, so φ(1000) = 1000 · 12 ·
4
5 = 400.

Now for what everyone’s been waiting for:

Theorem 9.8 (Euler’s Totient Theorem)

If a and n are relatively prime, aφ(n) ≡ 1 mod n.

You can try proving it as a problem, using a method very similar to the Number Theory proof presented earlier
for Fermat’s Little Theorem.

§9.3 Lagrange’s Theorem

Theorem 9.9 (Lagrange)

Let G be a finite group and let H be a subgroup of G. Then the order of H divides the order of G.

Example 9.10

Consider the symmetries of a triangle D3 = {e, ρ, ρ2, τ, ρτ, ρ2τ}.
The subgroups of D3 are: {e}, {e, τ}, {e, ρτ}, {e, ρ2τ}, {e, ρ, ρ2}, {e, ρ, ρ2, τ, ρτ, ρ2τ}

We need three lemmas to prove Lagrange. Let’s start:

Lemma 9.11 (First Lemma)

Let G be a group and H be a subgroup of G. For any two cosets g1H and g2H (where g1, g2 ∈ G), either
g1H = g2H, or g1H ∩ g2H = ∅.

In other words, any two cosets of H are either equal or disjoint (two sets are said to be disjoint sets if they have
no element in common).
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Proof. Suppose the cosets g1H and g2H are not disjoint. Then there is some element x that belongs to both
cosets, so x = g1 ◦ h1 = g2 ◦ h2 for some h1, h2 ∈ H (g1h1 is an element of g1H and g2h2 is an element of g2H).
We can write g1 in terms of g2: g1 = g2h2h

−1
1 . Now, let’s show that every element in g1H is also an element of

g2H. Consider g1h ∈ g1H.
g1h = (g2h2h

−1
1 )h = g2(h2h

−1
1 h) (20)

Since we can represent g1h in the form g2h
′ (for h′ ∈ H), we know that g1h must be an element of g2H. As we

can repeat this for any element g1h ∈ g1H, we know that g1H ⊆ g2H.
But, there’s really no difference between g1H and g2H, so our argument still holds if we swap g1 and g2 and

repeat the proof above. This tells us that g2H ⊆ g1H. Putting this together, we conclude that if g1H and g2H
are not disjoint, then they are equal.

Lemma 9.12 (Second Lemma)

Let G be a group and H be a subgroup of G. Then any two cosets of H contain the same number of
elements.

Proof. Bijection – each element of one set is paired with exactly one element of the other set, and each element
of the other set is paired with exactly one element of the first set.

We know that no element g1h ∈ g1H can have multiple representations. That is, g1h 6= g1h
′ for any h 6= h′ ∈ H.

To show that any two cosets g1H and g2H have the same number of elements, we will set up a bijection
between them. We can define a function f : g1H → g2H by f(g1h) = g2h for h ∈ H. Since every element in
g1H only appears once in g1H, we know that f pairs every element in g1H with one element in g2H.

This same reasoning still applies if we set up a function g : g2H → g1H, so g pairs every element in g2H with
one element in g1H. Thus, we’ve set up a bijection between g1H and g2H, so we’ve shown that any two cosets
of H have the same size.

Lemma 9.13 (Third Lemma)

Consider a group G with a subgroup H. G is the union of the cosets of H.

Proof. Since H is a subgroup of G, we know that e ∈ H. It follows that g ◦ e = g ∈ gH, so every element g ∈ G
is contained within some coset of H.

Just to make sure, let’s verify that the cosets don’t contain any additional elements:
Every element h ∈ H is also an element of G (by definition of subgroup). From our definition of group,

g1 ◦ g2 ∈ G for any g1, g2 ∈ G. Since all of the elements we’re composing to generate cosets are all elements of G,
we know that we can’t generate an element that isn’t in G.
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Example 9.14

Consider the group (Z/8Z,+) = {0, 1, 2, 3, 4, 5, 6, 7} and the subgroup H = {0, 2, 4, 6}. Let’s find the cosets
of H:

0 +H = {0, 2, 4, 6} (21)

1 +H = {1, 3, 5, 7} (22)

2 +H = {2, 4, 6, 0} (23)

3 +H = {3, 5, 7, 1} (24)

4 +H = {4, 6, 0, 2} (25)

5 +H = {5, 7, 1, 3} (26)

6 +H = {6, 0, 2, 4} (27)

7 +H = {7, 1, 3, 5} (28)

As you can see, there are 2 distinct cosets of H, and the union of the elements in all of the cosets is precisely
the elements of G.

And now we can prove Lagrange.

Proof. By the First Lemma, cosets are disjoint. By the Second Lemma, all cosets have the same size. By the
Third Lemma we can think of G as the union of all cosets gH. So, the total number of elements in the union
of all cosets equals the number of elements in each coset multiplied by the number of cosets. The number of
elements in each coset is equal to the order of H, thus |H| times the number of cosets (an integer) equals the
total number of elements in G.

Corollary 9.15

The order of any element of G divides the order of G.

Proof. Recall that we can generate a subgroup using any element g ∈ G. This subgroup is of the form
{e, g, g2, . . . , gord (g)−1}. The number of elements in the subgroup is ord(g), so the order of the subgroup is equal
to ord(g). So, by Lagrange’s Theorem, ord(g) must divide the order of G.

§9.4 Back to FLT

With a bit of NT group theory under our belt, let’s finally prove Fermat’s Little Theorem with group theory.

Proof. Recall the group (Z/pZ)× = {1, 2, . . . , (p− 1)}. We can represent a as some element of (Z/pZ)×: a ≡ b
mod p. By the corollary above, ord (b) divides |(Z/pZ)| = p− 1, so bp−1 = e.

This means ap−1 ≡ 1 mod p. Multiplying both sides by a, we get ap ≡ a mod p.

§9.5 Back to Euler’s

Let’s try Euler’s Totient Theorem as well.

Proposition 9.16

An integer a has an inverse modulo n if and only if gcd(a, n) = 1.

Proof. This is more of a sketch, fill in the details on your own:
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• gcd(a, n) = 1 implies inverses: If gcd(a, n) = 1, then we can find some integers b and c such that
ab− cn = 1 (this is a consequence of Bézout’s identity). Since cn+ 1 ≡ 1 mod n, we have ab ≡ 1 mod n.

• inverses imply gcd(a, n) = 1: If a has an inverse, then there exists some number b such that ab ≡ 1
mod n. This means ab = 1 + cn for some integer c. Rearranging, we find ab− cn = 1. Bézout’s identity
implies that gcd(a, n) = 1.

Proposition 9.17

Consider the set of all integers less than n which have inverses modulo n. This forms a group under
multiplication.

This group is commonly denoted as (Z/nZ)×.

Proof. We must prove four things:

1. closure: The product of two numbers that are relatively prime to n will result in another number that is
also relatively prime to n.

2. associativity: The binary operation is multiplication modulo n, which is associative.

3. identity: 1 is the identity because 1 · n = n · 1 = n for any number n. (we know that 1 1 must be in the
set because 1 is relatively prime to every number).

4. inverses: We defined our group as the set of all integers that have inverses modulo n.

Alright, we’re reading to prove Euler’s Totient Theorem.

Proof. Recall the above corollary from our proof of Lagrange’s Theorem: the order of any element of G divides
the order of G.

• Let’s consider the group (Z/nZ)×. By this corollary , ord g divides |(Z/nZ)×| for any element g ∈ (Z/nZ)×.

• Since gord g ≡ 1 mod n and ord g is a factor of |(Z/nZ)×|, we know that g|(Z/nZ)
×| ≡ 1 mod n.

• But we know that |(Z/nZ)×| = φ(n), so we have gφ(n) ≡ 1 mod n.

We can represent any integer that is relatively prime to n as an element of (Z/nZ)× simply by considering its
value modulo n, so Euler’s Totient Theorem works for any integer a.

§9.6 More on FLT

Sometimes, ap ≡ a mod p works even when p is not prime!

Theorem 9.18 (Fermat Primality Test)

ap ≡ a mod p is unlikely to hold for a random a if p is composite.

Definition 9.19 (Fermat Liar) — A Fermat liar is any a such that an−1 ≡ 1 mod n where n is composite.
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Definition 9.20 (Fermat Witness) — A Fermat witness is any a such that an−1 6≡ 1 mod n where n is
composite.

Definition 9.21 (Carmichael Number) — A Carmichael number is any composite number n which
satisfies bn ≡ b mod n for all integers b which are relatively prime to n.

The smallest Carmichael number is 561. We won’t use this much – it is just for the interested reader.

§10 Non-Abelian Groups

Definition 10.1 (Abelian Group) — An abelian group G is a group where the binary operation is
commutative. That is, for all a, b ∈ G, we have

ab = ba

Example 10.2

The set of integers under addition is abelian, because addition is commutative.

Everyone can see non-abelian groups coming:

Definition 10.3 (Non-Abelian Groups) — An nonabelian group G is a group where the binary operation
is not commutative. That is, there exist some a, b ∈ G, such that

ab 6= ba

Example 10.4

The group of transformations of an equilateral triangle, or D3, is nonabelian.

e ρ ρ2 τ ρτ ρ2τ

e e ρ ρ2 τ ρτ ρ2τ
ρ ρ ρ2 e ρτ ρ2τ τ
ρ2 ρ2 e ρ ρ2τ τ ρτ
τ τ ρ2τ ρτ e ρ2 ρ
ρτ ρτ τ ρ2τ ρ e ρ2

ρ2τ ρ2τ ρτ τ ρ2 ρ e

Remember, the multiplication tables of abelian groups are symmetric about the main diagonal,
while the multiplication tables of nonabelian groups are not!

§10.1 A Difference Between Abelian and Non-abelian

We’ve already defined cosets for abelian groups. In particular, left and right multiplication are the same. But
for nonabelian groups, right and left multiplication are different! So now, we have right and left cosets.
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Definition 10.5 (Left/Right Cosets) — Take a subgroup H of an nonabelian group G.

1. The left cosets of H are defined as the sets gH = {gh : h ∈ H} (read: the set of all possible products
gh, where h is an element of H), where g can take any value in G.

2. The right cosets of H are defined as the sets Hg = {hg : h ∈ H}.

§10.2 Normal Subgroups

Definition 10.6 (Normal Subgroup) — Here are three definitions of what a normal subgroup H of G is:

1. The sets of right and left cosets of H are the same

2. Consider a group G with normal subgroup N . For any element g ∈ G,n ∈ N we have gng−1 ∈ N.

3. A group is a normal subgroup if and only if it is the kernel of a homomorphism from G → G′, for
some G′.

Example 10.7

All subgroups of abelian groups are normal. (Why?)

Example 10.8

The whole group G and the trivial subgroup {e} are both normal subgroups of G.

Example 10.9

The subgroup {e, ρ, ρ2} of D3 is normal. (Why?)

Let’s try to see why these definitions are the same.
First, let’s assume the second definition, and try to see why the first definition holds. If we always have

gng−1 ∈ N for all g ∈ G,n ∈ N then what does this mean?
Rewriting this, we have gng−1 = n′, for some n′ ∈ N . Then gn = n′g. So consider the set of elements

“outputted” on the left side... it’s the left coset gN ! Similarly, the right hand side is the right coset Ng!
Now, let’s assume the first definition, and try to see why the second definition holds. We assume the set of

right and left cosets are the same.
Every element only belongs to one left coset, and one right coset (remember, cosets partition the group.) So

what this means is that, for any element g, we have gn = n′g, for some n, n′ ∈ N . Multiplying by g−1 on the
right, we have gng−1 = n′. That’s exactly what the second definition says!

§10.3 Quotient Groups

Definition 10.10 (Quotient Group) — Let G be a group and let N be a normal subgroup of G. Then
G/N = {gN : g ∈ G} is called the quotient group of N in G.

In essence, the quotient group is the set of all of the (left) cosets of H.
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Okay, we have a set, but we also need a binary operation that can be performed between the cosets: consider
two cosets aN and bN in G/N . We define the composition of aN and bN as (aN)(bN) = (ab)N , where
(ab)N = {abn : n ∈ N}.
G/N satisfies the group axioms:

1. Closure: (aN)(bN) = (ab)N , and (ab)N is also a coset of N .

2. Associativity:
(
(aN)(bN)

)
(cN) = (abc)N = (aN)

(
(bN)(cN)

)
.

3. Identity: eN (or just N) is the identity.

4. Inverses: every element g ∈ G has an inverse, so for every coset gN , there exists a coset g−1N such that
(gN)(g−1N) = (gg−1)N = eN .

§10.4 A More Intuitive Explanation of Quotient Groups

In other words, storytime. The following are copied from a blog post by Tai-Danae Bradley on her blog
Math3ma.

Mathematician enters room full of elements of G chatting quietly amongst themselves Hi folks. How are
we today? Doin’ well? Great. Listen, would those of you who answered “yes” to question #1 please raise your
hand? Fantastic, hi there. Thank you. Now, if you would, please huddle together in a single pile. Yes, just like
that. You’re doin’ fine, folks, just fine. Alright, from now on we will refer to you collectively as “N” or - on a
good day - we might also call you “the trivial coset.” But we no longer care about y’all as individuals. Sorry.
You’ll get used to it.

Mathematician turns her attention to the folks not in N Hey there, everyone. Would you please raise your
hand if you selected “not too badly” for question #2? Great, how you folks doin’? Good. Look, although none
of you satisfy the property to belong to N , you do satisfy a different property: You all fail not too badly (ntb).
Congrats! Now please form your own huddle over in that corner. Quickly now, folks. Okay perfect. Listen, we
no longer care about you individually - y’all are all indistinuishable to us. For this reason, we’ll refer to you as
“(ntb)N” or sometimes “the coset ntb.”

Mathematician addresses remaining elements in the room Hi there, y’all, thanks for waiting. Would those
of you who fail to belong to N “pretty badly” (pb) please form your own pile? Sure, you can stand in that
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corner. That’s right, go ahead. Now because you all possess the special property of ’failing pretty badly,’ you’re
all the same to us, and so we’ll just call all of you “(pb)N” or “the coset pb.”

Alright now, I see y’all who are “not even close” (nec) to meeting the requirements of belonging to N have
already huddled together. Thanks so much, folks. Now now, stop all that crying! It’s not such a bad thing. You,
too, satisfy a very special property: you all fail really badly. Isn’t that great? It sure is. So we’ll collectively
refer to you all as “(nec)N” or “the coset nec.”

Mathematician happily exits the room

§10.5 Examples of Quotient Groups

Example 10.11 (Wikipedia)

Consider the group of integers Z (under addition) and the subgroup 2Z consisting of all even integers. This
is a normal subgroup, because Z is abelian. There are only two cosets: the set of even integers and the
set of odd integers, and therefore the quotient group Z/2Z is the cyclic group with two elements. The two
cosets are 2Z and 1 + 2Z.

Example 10.12

Consider the group Z and the subgroup 6Z. The distinct cosets are

6Z, 1 + 6Z, 2 + 6Z, 3 + 6Z, 4 + 6Z, and 5 + 6Z.

Example 10.13

Consider the set of reals under addition and the (normal) subgroup, the x-axis. The cosets are all of the
horizontal lines. (Addition is defined by adding their y-components).

Theorem 10.14 (Normal Subgroup Criterion)

A subgroup N of G is normal if and only if there is a homomorphism from f : G→ G′ such that ker(f) = N.

Proof. One way is easy: If we define f to be the map from G to G/N, then clearly N is mapped to the subgroup.
In the other direction, we already know ker(f) = N is a subgroup from previous classes. Now, f(gng−1) =

f(g)f(n)f(g−1) = f(g) ◦ eG′ ◦ f(g−1) = eG′ , so gng−1 is inside the kernel of f. In particular, this implies
gng−1 ∈ N, so we have N is normal.
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§11 Rings and Fields

§11.1 Rings

Definition 11.1 (Ring) — We define a ring R to be a set with the following properties:

1. It’s an abelian group under “addition” (one binary operation), and the additive identity is called “0”

2. We have a second binary operation · (multiplication) that’s commutative (no inverse needed)

3. There is a multiplicative identity (called “1”)

4. a · (b+ c) = a · b+ a · c

In other words, rings are basically a set that’s a group in 2 ways, satisfying the distributive property but not
needing an inverse for one of the binary operations.

Example 11.2

R, Q, and Z are all rings under normal addition and multiplication.

Example 11.3

R[x], (read: “the real numbers adjoint x”) or the polynomials with real coefficients, form a ring. In general,
R[x] for any ring R forms a (polynomial) ring.

§11.2 Fields

Definition 11.4 (Field). A field is a ring with the property that every nonzero element is a unit (or, all
elements which are not the multiplicative identity have an inverse).

Example 11.5

R, Q are both fields under normal addition, multiplication. Z is not.

§12 Problems

§12.1 Sets

Problem 12.1. Let set A = {3, 2, 4} and set B = {a, b, c, d}. Find the direct product, A×B.

Problem 12.2. Under what conditions does A×B = B ×A for sets A and B?

§12.2 Geometry

Problem 12.3. Try to find all of the symmetries of a square and represent them in terms of ρ, a counterclockwise
rotation by 90◦, and τ , a reflection about the vertical axis. Convince yourself that this set of symmetries forms a
group.

Problem 12.4. A Platonic solid is a convex polyhedron whose faces are all congruent regular polygons, with
the same number of faces meeting at each vertex. How many symmetries do each of the Platonic solids have?
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§12.3 Homomorphisms

Problem 12.5 (Math 412). Consider the group G = {e, a}, where e is the identity element and a ◦ a = e and a
function f : (R\{0}, ·)→ G , where f sends all positive numbers to e and all negative numbers to a.4

a. Show that f is a homomorphism.

b. Find Ker(f).

c. Find Im(f).

Problem 12.6. Consider a function f : G → H between groups G and H, where f(g) = eH for all elements
g ∈ G (where eH is the identity element of H).

a. Show that f is a homomorphism.

b. Find Ker(f).

c. Find Im(f).

Problem 12.7. Let f : G→ H be a homomorphism between groups G and H. Prove that the kernel of f is a
group.

• For positive numbers a, b:
f(ab) = e = e · e = f(a) · f(b)

• For a positive number c and a negative number d:

f(cd) = a = e · a = f(c) · f(d)

• For two negative numbers g, h:
f(gh) = e = a · a = f(g) · f(h)

Problem 12.8. Let f : G→ H be a homomorphism between groups G and H. Prove that the image of f is a
group.

Problem 12.9 (Judson’s Abstract Algebra). Let f : G→ H be a homomorphism between groups G and H.
Prove that, if G is abelian, then the image of f is also abelian.

§12.4 Number Theory

Problem 12.10. What is 52004 mod 2003? (Hint: 2003 is prime!)

§12.5 Groups and Group Theory

Here are some problems that either pertain to groups or group theory at large (abelian groups and quotient
groups and such).

Problem 12.11. Is Z a group under multiplication? Prove or disprove.

Problem 12.12. Is Q\{0} (the set of rationals, excluding 0) a group under multiplication? Prove or disprove.

Problem 12.13. Is the set of fractions with odd numerators and denominators a group under addition?

Problem 12.14. Show that the direct product of two groups is also a group.

4(R\{0}, ·) is the group of all real numbers, excluding 0, under multiplication.

27



Emma Cardwell and Matthew Ho (January 6, 2021) Group Theory

Problem 12.15. Let G be a group. Show that if g2 = e for all g ∈ G, then G is abelian (the binary operator is
commutative).

Problem 12.16. Show that every group of order 4 is abelian.

Problem 12.17 (Challenging). Extend Wilson’s theorem to show that the product of all elements of an abelian
group is either the identity or an element of order 2.

Problem 12.18. Is Z a group under multiplication? Prove or disprove.

Problem 12.19. Is Q\{0} (the set of rationals, excluding 0) a group under multiplication? Prove or disprove.

Problem 12.20. Is the set of fractions with odd numerators and denominators a group under addition?

Problem 12.21. Consider the group D3 = {e, ρ, ρ2, τ, ρτ, ρ2τ and the subgroup H = {e, ρ, ρ2}.

a. Find the elements of the coset τH.

b. Find the elements of the coset ρH.

Problem 12.22. Consider the group Z (integers under addition) and the subgroup 7Z (all multiples of 7). Find
the cosets of 7Z.

Problem 12.23. Consider a group G and a subset H. Under what conditions is a coset gH also a subgroup of
G?

Problem 12.24. Prove your answer to the previous problem!

Problem 12.25 (Challenging). A cyclic group is a group that can be generated from one element in the group.
For cyclic groups of finite order, we can represent them as G = {e, g, g2, . . . , g|G|−1}. Prove that every group
with prime order is cyclic.

Problem 12.26 (Challenging). Show that there exists a bijection (a way to map elements from one set to
another) from elements of any coset to elements of any other coset, given a subgroup in an infinite group.

Problem 12.27. Prove that the center of a group G (the set of all elements g ∈ G that satisfy gx = xg for all
other elements x ∈ G) is a normal subgroup.

Problem 12.28. What is the center of any abelian group?

Problem 12.29. What are the elements of the quotient group Z/nZ?

Problem 12.30. What are the elements of the quotient group Z/(Z/nZ)?
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§A Appendix A: List of Theorems and Definitions

List of Theorems

4.2 Theorem - Properties of (Z/pZ)∗ 9

4.3 Theorem - Pigeonhole Principle 9

4.5 Theorem - Wilson’s Theorem 10

4.9 Theorem - Orders in a Finite Group 11

5.1 Theorem - Identity is Unique 11

7.1 Theorem - Homomorphisms Preserve Identity 12

7.5 Theorem - Homomorphisms Preserve Inverses 13

8.7 Theorem - # of Elements of Cosets and Subgroups 15

9.1 Theorem - Fermat’s Little Theorem 16

9.7 Theorem - Totient Formula 18

9.8 Theorem - Euler’s Totient Theorem 18

9.9 Theorem - Lagrange 18

9.18 Theorem - Fermat Primality Test 21

10.14 Theorem - Normal Subgroup Criterion 25

List of Definitions

1.1 Definition - Group Theory 5

4.4 Definition - Factorial 10

4.7 Definition - Order of a Group 10

4.8 Definition - Order of an Element in a Finite Group 10

5.2 Definition - Group Homomorphism 11

6.1 Definition - Kernel 12

6.4 Definition - Image 12

8.1 Definition - Subgroup 14

8.4 Definition - Coset 14
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9.4 Definition - Double Counting 16

9.6 Definition - φ 17

9.19 Definition - Fermat Liar 21

9.20 Definition - Fermat Witness 22

9.21 Definition - Carmichael Number 22

10.1 Definition - Abelian Group 22

10.3 Definition - Non-Abelian Groups 22

10.5 Definition - Left/Right Cosets 23

10.6 Definition - Normal Subgroup 23

10.10 Definition - Quotient Group 23

11.1 Definition - Ring 26

B.1 Definition - Primitive Root 30

§B Appendix B: Applications

§B.1 Math

A few questions:

1. Let’s say we have a cube that’s already built for us. Can we use a straightedge and a compass to construct
another cube that’s double the volume?

2. Can we construct a pentagon using ruler and compass? What about a regular n-gon?

3. Can we trisect an angle (into three equal parts) only using straightedge and compass?

4. Can we find the roots of a quintic equation with integer coefficients only using addition, subtraction,
multiplication, division, and radicals?

The answer to all of these are no. For the quintic problem, this has to do with a group called A5 not having any
normal subgroups.

§B.2 Science

Some other applications:

1. Error detecting with hamming code

2. (Discrete Log Problem) Let’s say we have a modulus n, and elements a, b.

Definition B.1 (Primitive Root) — x is a primitive root modulo n if every number that is relatively
prime to x can be written as xk mod n, for some value k.

If b is a primitive root modulo n, then what’s the minimum exponent x such that bx = a?
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3. Diffie-Hellman (cryptography)

4. (Conservation Laws) It turns out that symmetries in our physical world lead to conservation laws by
something called Noether’s Theorem. This has many applications, including particle physics. Examples:
conservation of momentum, conservation of energy, conservation of angular momentum, etc.

5. (Chemistry) In general, an action which leaves the object looking the same after a transformation is called
a symmetry operation. Typical symmetry operations include rotations, reflections, and inversions. There
is a corresponding symmetry element for each symmetry operation, which is the point, line, or plane with
respect to which the symmetry operation is performed. For instance, a rotation is carried out around an
axis, a reflection is carried out in a plane, while an inversion is carried our in a point.

We shall see that we can classify molecules that possess the same set of symmetry elements, and grouping
together molecules that possess the same set of symmetry elements. This classification is very important,
because it allows to make some general conclusions about molecular properties without calculation.
Particularly, we will be able to decide if a molecule has a dipole moment, or not and to know in advance
the degeneracy of molecular states. We also will be able to identify overlap, or dipole moment integrals
which necessary vanish and obtain selection rules for transitions in polyatomic molecules.
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