# ATEX Basics 

Dylan Yu

January 8, 2022

## Table of Contents

1 Introduction

- What is $\operatorname{AT} T_{E X}$ ?
- Why learn $\operatorname{AT} T_{E} \mathrm{E}$ ?
- Math Equations


## What is $A_{E} T_{E X}$ ?

ATEX (pronounced LAY-tek or LAH-tek) is a tool used to create professional-looking documents.

## What is LATEX?

LATEX (pronounced LAY-tek or LAH-tek) is a tool used to create professional-looking documents. It is based on the WYSIWYM (what you see is what you mean) idea, meaning you only have focus on the contents of your document and the computer will take care of the formatting.

## Why learn LATEX?

1 It's useful

## Why learn LATEX?

1 It's useful

- There's a high amount of customizability


## Why learn LATEX?

1 It's useful

- There's a high amount of customizability
- It's extremely stable (so your document won't crash and burn the next time you compile it, unless you broke your computer or something)


## Why learn LATEX?

1 It's useful

- There's a high amount of customizability
- It's extremely stable (so your document won't crash and burn the next time you compile it, unless you broke your computer or something)
- You can collaborate with others via Overleaf, Github, or Dropbox (the later two are preferred by serious users)


## Why learn LATEX?

1 It's useful

- There's a high amount of customizability
- It's extremely stable (so your document won't crash and burn the next time you compile it, unless you broke your computer or something)
- You can collaborate with others via Overleaf, Github, or Dropbox (the later two are preferred by serious users)
2 It's aesthetically pleasing


## Why learn LATEX?

1 It's useful

- There's a high amount of customizability
- It's extremely stable (so your document won't crash and burn the next time you compile it, unless you broke your computer or something)
- You can collaborate with others via Overleaf, Github, or Dropbox (the later two are preferred by serious users)
2 It's aesthetically pleasing
- In fact, it's the easiest language that also produces beautiful documents


## Why learn $A T E X$ ?

1 It's useful

- There's a high amount of customizability
- It's extremely stable (so your document won't crash and burn the next time you compile it, unless you broke your computer or something)
- You can collaborate with others via Overleaf, Github, or Dropbox (the later two are preferred by serious users)
2 It's aesthetically pleasing
■ In fact, it's the easiest language that also produces beautiful documents
- For example, you could use LATEX for Google Docs, but it looks bad and you won't get the same functionality


## Why learn LATEX?

1 It's useful

- There's a high amount of customizability
- It's extremely stable (so your document won't crash and burn the next time you compile it, unless you broke your computer or something)
- You can collaborate with others via Overleaf, Github, or Dropbox (the later two are preferred by serious users)
2 It's aesthetically pleasing
- In fact, it's the easiest language that also produces beautiful documents
- For example, you could use LATEX for Google Docs, but it looks bad and you won't get the same functionality
- You'll see examples of nicely presented articles later


## Why learn LATEX?

Note: a valid reason to learn $\operatorname{AT} T_{E X}$ is to make your documents look better, but don't rewrite everything you've ever made in ATEX; that's pointless.

## Why learn LATEX?

Note: a valid reason to learn $\operatorname{AT} T_{E X}$ is to make your documents look better, but don't rewrite everything you've ever made in $A_{E} T_{E X}$; that's pointless. I also don't think you should learn it (or at least anything beyond the basics) if you're solely typing math equations.

## Math Equations

- In-line math mode: use $\$$.

| $\$ \backslash$ sqrt $\{\mathrm{x}\}=5 \$$ | $\sqrt{x}=5$ |
| :--- | :--- |

## Math Equations

- In-line math mode: use $\$$.

$$
\begin{array}{l|l}
\hline \$ \backslash \text { sqrt }\{x\}=5 \$ & \sqrt{x}=5 \\
\hline
\end{array}
$$

- Display math mode: use $\$ \$$ or $\backslash[\backslash]$ (the latter is strongly preferred).

$$
\backslash[\backslash \text { sqrt }\{x\}=5 \backslash] \quad \sqrt{x}=5
$$

(The difference is that the equation is centered here.)

## Math Equations

■ In-line math mode: use $\$$.

$$
\begin{array}{l|l}
\hline \$ \backslash \text { sqrt }\{\mathrm{x}\}=5 \$ & \sqrt{x}=5 \\
\hline
\end{array}
$$

■ Display math mode: use $\$ \$$ or $\backslash[\backslash]$ (the latter is strongly preferred).

$$
\backslash[\backslash \text { sqrt }\{x\}=5 \backslash] \quad \sqrt{x}=5
$$

(The difference is that the equation is centered here.)
There are reasons to use one over the other: for smaller equations, there's no need to use display math mode, but larger equations should be centered.

## Math Expressions

- Addition and subtraction stay the same.


## Math Expressions

- Addition and subtraction stay the same.
- Do NOT use $*$ and / for multiplication and division! Instead, do the following:

```
$\times$, $\cdot$,
    $\div$
```

$$
\times, \cdot, \div
$$

## Math Expressions

- Addition and subtraction stay the same.
- Do NOT use $*$ and / for multiplication and division! Instead, do the following:

```
$\times$, $\cdot$,
    $\div$
```

- Fractions:

| $\$ \backslash f r a c\{x+y\}\{2\} \$$ | $\frac{x+y}{2}$ |
| :--- | :---: |

## Math Expressions

■ Roots:

| \$\sqrt\{2\}\$ | $\sqrt{2}$ |
| :--- | :--- |

## Math Expressions

- Roots:
\$\sqrt\{2\}\$
- Superscripts and subscripts:
\$a_k \cdot x^k\$

$$
a_{k} \cdot x^{k}
$$

## Math Expressions

- Roots:

| \$\sqrt $\{2\} \$$ | $\sqrt{2}$ |
| :--- | :--- |

- Superscripts and subscripts:
\$a_k \cdot x^k\$

$$
a_{k} \cdot x^{k}
$$

Remember to use curly braces:

$$
\begin{aligned}
& \$ 2^{\wedge} 2021 \$ \text { v.s. } \\
& \$ 2^{\wedge}\{2021\} \$
\end{aligned}
$$

```
\(2^{2} 021\) v.s. \(2^{2021}\)
```


## Math Expressions

- If curly braces are used for grouping, how do we display one?

| $\$ \backslash\{\backslash\} \$$ | $\}$ |
| :--- | :--- |

Note that spaces don't matter in math mode.

## Math Expressions

- If curly braces are used for grouping, how do we display one?

| $\$ \backslash\{\backslash\} \$$ | $\}$ |
| :--- | :--- |

Note that spaces don't matter in math mode.
■ Dots:
\$\cdots\$, \$···\$,
\$\vdots\$

## Math Expressions

- If curly braces are used for grouping, how do we display one?

| $\$ \backslash\{\backslash \$$ | $\}$ |
| :--- | :--- |

Note that spaces don't matter in math mode.

- Dots:
\$\cdots\$, \$···\$, \$\vdots\$
- Sums and products:

$$
\begin{array}{c|c}
\hline \$ \backslash \text { sum_\{i=0\}^n a_i }+ \\
\backslash \text { prod_\{j=1\}^k b_j\$ }
\end{array} \quad \sum_{i=0}^{n} a_{i}+\prod_{j=1}^{k} b_{j}
$$

## Math Expressions

- Inequalities:
\$>\$, \$<\$, \$\ge\$, \$\le\$ $\quad>,<, \geq, \leq$


## Math Expressions

- Inequalities:

```
$>$, $<$, $\ge$, $\le$ >, <, \geq,\leq
```

- Text inside math mode:

```
$\text{It is } 6
    \text{ p.m.}$
```

It is 6 p.m.

## Math Expressions

- Inequalities:

```
$>$, $<$, $\ge$, $\le$ >, <, \geq,\leq
```

- Text inside math mode:

```
$\text{It is } 6
    \text{ p.m.}$
```

- I won't talk about aligning and numbering equations; look into that by yourself.


## Table of Contents

2 Starting a basic document

- Preamble
- Title page


## Preamble

There aren't that many necessary parts to a very basic LATEX document.
\documentclass\{article\}
\begin\{document\} }
The solution to $\backslash[\backslash$ sqrt $\{x\}=5 \backslash]$ is $\backslash[x=25 . \backslash]$
\end\{document\} }
The part before \begin\{document\} is called the preamble. We } usually put packages (similar to importing things in Java) there, among other things that we'll discuss later.

## Title page

Pretty self explanatory:
\documentclass\{article\}

\title\{An example document\} \% The title

\author\{John Doe\} \% Author's name
\date\{\today\} \% The date; you can choose a specific date \begin\{document\} }
\maketitle \% Creates the title

The solution to $\backslash[\backslash \operatorname{sqrt}\{\mathrm{x}\}=5 \backslash]$ is $\backslash[\mathrm{x}=25 . \backslash]$
\end\{document\} }

## Table of Contents

3 Details

- Bold, italics, and underline

■ Comments

- Images
- Lists
- Sections
- Tables and figures


## Bold, italics, and underline

- Bold:

| \textbf $\{$ Bold $\}$ | Bold |
| :--- | :--- |

## Bold, italics, and underline

- Bold:

| \textbf $\{$ Bold $\}$ | Bold |
| :--- | :--- |

- Italics:
\textit\{Italics\}
Italics


## Bold, italics, and underline

- Bold:

| \textbf $\{$ Bold $\}$ | Bold |
| :--- | :--- |

- Italics:

| \textit\{Italics\} | Italics |
| :--- | :--- |

■ Underline:
\underline\{Underline\} Underline

## Bold, italics, and underline

- Bold:

| $\backslash$ textbf $\{$ Bold $\}$ | Bold |
| :--- | :--- |

- Italics:

| \textit\{Italics\} | Italics |
| :--- | :--- |

■ Underline:

$$
\begin{aligned}
& \text { \underline\{Underline\} }
\end{aligned} \underline{\text { Underline }}
$$

For emphasis, it is not recommended you use the above; instead, redefine the command $\backslash e m p h$ (which is usually italics) to your liking. I usually use \vocab for highlights, but \alert is also a good name.

## Comments

You might've noticed the percent symbol before; these are called comments. Some languages (like Java) use // for comments. ATEX uses \%.

$$
\begin{aligned}
& \text { \% The solution to } \\
& \backslash[\backslash \text { sqrt }\{x\}=5 \backslash] \text { is } \\
& \backslash[x=25 . \backslash]
\end{aligned}
$$

There's no display because it's a comment.

## Images

Inserting images is easy:


## Images

Inserting images is easy:

Centering them, adjusting them, etc. are a bit harder, but still manageable:


Figure: Thonk

## Lists

With numbers:
1 One
Without numbers:
■ Dot

## Sections

In math articles, we usually like to outline our topic. They work as "headers."

\section\{A section\}

Divide your topic into smaller parts.

\subsection\{A subsection\}

Even smaller.
\subsubsection\{A subsubsection\}
\textit\{Even smaller.\}
\paragraph\{A paragraph\} Gives a title to a paragraph.
You can use \tableofcontents to display the table of contents (duh).

## Tables and figures

Take a look at the example below; don't worry too much about the [H] for now.

```
\begin{figure} [H]
\centering
\begin{tabular}{c|c}
\textbf{Kanye} &
    \textbf{Drake}\\\
\hline
MBDTF & IYRTITL\\
CD & TML
\end{tabular}
\caption{A table inside
    a figure
    environment.}
\end{figure}
```

| Kanye | Drake |
| :---: | :---: |
| MBDTF | IYRTITL |
| CD | TML |

Figure: A table inside a figure environment.

## Table of Contents

4 Commands

- \newcommand
- \newenvironment
newcommand

Defining new commands with \newcommand is like creating a method in Java. You give it some name, and insert a few parameters, and output something.
\newcommand\{\introduce\}[1]\{Hi my name is \#1.\}

## newcommand

Defining new commands with \newcommand is like creating a method in Java. You give it some name, and insert a few parameters, and output something.
\newcommand\{\introduce\}[1]\{Hi my name is \#1.\}
The first part, \introduce, is the name of the command. The second part, [1] is the number of parameters. Unlike with many other languages, there's no need for data types. The third part is what the command should output, where the first parameter (if there is one) is denoted with \#1, the second (if there is one) is denoted with \#2, etc.

## newcommand

Defining new commands with \newcommand is like creating a method in Java. You give it some name, and insert a few parameters, and output something.
\newcommand\{\introduce\}[1]\{Hi my name is \#1.\}
The first part, \introduce, is the name of the command. The second part, [1] is the number of parameters. Unlike with many other languages, there's no need for data types. The third part is what the command should output, where the first parameter (if there is one) is denoted with \#1, the second (if there is one) is denoted with \#2, etc. Running the above command, we get
\introduce\{Dylan\} $\quad$ Hi my name is Dylan.

## newenvironment

We use \newenvironment when we have something larger (e.g. with paragraphs) as a parameter.
\newenvironment\{boldquote\}\{My quote is: \newline\} \{\newline\textit\{--- Me.\}\}

## newenvironment

We use \newenvironment when we have something larger (e.g. with paragraphs) as a parameter.
\newenvironment\{boldquote\}\{My quote is: \newline\} \{\newline\textit\{--- Me.\}\}

The first part, boldquote, is the name of the environment. The second part, My quote is:\newline, is what appears before the text you will type. The third part, \newline\textit\{--- Me.\}, is what appears after the text you will type. You can think of this like a sandwich: first is the \begin stuff, then it's your text, and finally it's the \end stuff.

## newenvironment

We use \newenvironment when we have something larger (e.g. with paragraphs) as a parameter.
\newenvironment\{boldquote\}\{My quote is: \newline\} \{\newline\textit\{--- Me.\}\}

The first part, boldquote, is the name of the environment. The second part, My quote is:\newline, is what appears before the text you will type. The third part, \newline\textit\{--- Me.\}, is what appears after the text you will type. You can think of this like a sandwich: first is the \begin stuff, then it's your text, and finally it's the \end stuff. Running the above environment, we get

```
\begin{boldquote}
I am cool.
\end{boldquote}
```

My quote is:
I am cool.

- Me.


## Table of Contents

5 Code-generated figures

- Asymptote
- Tikz


## Asymptote

As you'd expect, code-generated figures are generated by...code.

## Asymptote

As you'd expect, code-generated figures are generated by...code. Here's a figure by Evan Chen:


Figure: USA TST 2013/3

## Asymptote

As you'd expect, code-generated figures are generated by...code. Here's a figure by Evan Chen:


Figure: USA TST 2013/3

A lot of people who do olympiad math use Asymptote (because it is compatible with AoPS).

## Tikz

Tikz and Asymptote can do the same things (probably) but I prefer Tikz because it is more stable (at least on Overleaf).

## Tikz

Tikz and Asymptote can do the same things (probably) but I prefer Tikz because it is more stable (at least on Overleaf). Here's an example figure using Tikz:


Figure: The right Riemann sum of $3 e^{-x} x^{3}+1$.

## Table of Contents

6 Beauty

- Handouts

■ Style Files

- More fun


## Handouts

There are many beautiful handouts that can be made with $A T T_{E} X$.

## Handouts

There are many beautiful handouts that can be made with $A T_{E X}$.


Figure: The first handout is by Raymond Feng and Eric Shen; the second handout is by Evan Chen; the third is by me.

## Style files

There are many pretty style files, which are basically just custom-made designs that act like a "template" for your article. Some nice ones are evan.sty by Evan Chen (he doesn't have an example document so this is just one of his handouts),

## Style files

There are many pretty style files, which are basically just custom-made designs that act like a "template" for your article. Some nice ones are evan.sty by Evan Chen (he doesn't have an example document so this is just one of his handouts), lucky.sty by Dennis Chen, and

## Style files

There are many pretty style files, which are basically just custom-made designs that act like a "template" for your article. Some nice ones are evan.sty by Evan Chen (he doesn't have an example document so this is just one of his handouts), lucky.sty by Dennis Chen, and dylanadi.sty by me (sorry for the self-advertisement).

## Style files

There are many pretty style files, which are basically just custom-made designs that act like a "template" for your article. Some nice ones are evan.sty by Evan Chen (he doesn't have an example document so this is just one of his handouts), lucky.sty by Dennis Chen, and dylanadi.sty by me (sorry for the self-advertisement).

Oh and for fun take a look at my dark mode.

## More fun

Just some random assortment of things that I think look nice:

## More fun

Just some random assortment of things that I think look nice:


Figure: From left to right: a handout by Dennis Chen, a handout by Amol Rama and I, and a secret spiral similarity in USA TSTST 2018/5.

## More fun

There aren't picture for these, since they are more technical:

## More fun

There aren't picture for these, since they are more technical:

- VON by Evan Chen, an olympiad problem database written in Python, but prints out documents in $\mathrm{AL}_{\mathrm{E}} \mathrm{X}$


## More fun

There aren't picture for these, since they are more technical:
■ VON by Evan Chen, an olympiad problem database written in Python, but prints out documents in $\mathrm{A} T_{E} \mathrm{X}$

- Napkin by Evan Chen, an open source math textbook written in ATEX


## More fun

There aren't picture for these, since they are more technical:
■ VON by Evan Chen, an olympiad problem database written in Python, but prints out documents in $\mathrm{AD}_{\mathrm{E}} \mathrm{X}$
■ Napkin by Evan Chen, an open source math textbook written in ATEX

- Dynamic Programming in Computing Contests by Arpan Banerjee, a book on dynamic programming written in $A T_{E} X$


## More fun

There aren't picture for these, since they are more technical:

- VON by Evan Chen, an olympiad problem database written in Python, but prints out documents in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$
■ Napkin by Evan Chen, an open source math textbook written in ATEX
- Dynamic Programming in Computing Contests by Arpan Banerjee, a book on dynamic programming written in $\operatorname{LAT}_{E} \mathrm{X}$
- An Introduction to USACO by Darren Yao, a beginner's guide to USACO written in $A T_{E X}$; the cover was designed by me (in ATEX, of course)


## More fun

There aren't picture for these, since they are more technical:

- VON by Evan Chen, an olympiad problem database written in Python, but prints out documents in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$
- Napkin by Evan Chen, an open source math textbook written in ATEX
- Dynamic Programming in Computing Contests by Arpan Banerjee, a book on dynamic programming written in $A T_{E} X$
- An Introduction to USACO by Darren Yao, a beginner's guide to USACO written in ATEX; the cover was designed by me (in ATEX, of course)
As you can tell, Evan Chen loves $A_{\text {ATEX }}$.


## Table of Contents

7 Parting words

- Google
- Further Reading


## Google

Google is your best friend when it comes to learning ${ }^{A} T_{E} X$.

## Google

Google is your best friend when it comes to learning ${ }^{A T} T_{E X}$. If you are confused by something, Google it, and if you can't figure out what exactly you're trying to ask, join a $\mathrm{A} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ Discord server $/ T_{E} X$ StackExchange (I prefer the former but the latter will yield better results) and ask the question there.

## Further Reading

1 Learn $A T_{E X}$ in 30 minutes; these slides were heavily based on this article

## Further Reading

1 Learn $A T_{E X}$ in 30 minutes; these slides were heavily based on this article
2 A Beginner's Guide to ${ }^{L} T_{E X}$

## Further Reading

1 Learn $A T_{E X}$ in 30 minutes; these slides were heavily based on this article
2 A Beginner's Guide to ${ }^{L A} T_{E X}$
3 An Example ATEX Document; you can also take a look at the sources of Evan Chen's handouts for more examples

## Further Reading

1 Learn $A T_{E X}$ in 30 minutes; these slides were heavily based on this article
2 A Beginner's Guide to ${ }^{L} T_{E} \mathrm{EX}$
3 An Example ATEX Document; you can also take a look at the sources of Evan Chen's handouts for more examples
4 Notes on Programming in $T_{E X}$; I haven't read through the whole thing, but it should be pretty comprehensive for your everyday needs

## Further Reading

A list of other stuff to learn (that I can remember):
■ using ' ' and '' for quotes; you should never use " (double quotes) for quotes!

## Further Reading

A list of other stuff to learn (that I can remember):
■ using ' ' and '' for quotes; you should never use " (double quotes) for quotes!

- aligning/numbering equations


## Further Reading

A list of other stuff to learn (that I can remember):
■ using ' ' and '' for quotes; you should never use " (double quotes) for quotes!

- aligning/numbering equations

■ lists with different types of bullets and numbering (e.g. with letters, with roman numerals, etc.)

## Further Reading

A list of other stuff to learn (that I can remember):
■ using ' ' and '' for quotes; you should never use " (double quotes) for quotes!

- aligning/numbering equations

■ lists with different types of bullets and numbering (e.g. with letters, with roman numerals, etc.)
■ using [H] v.s. [h] v.s. [!ht] v.s. etc. for figures

## Further Reading

A list of other stuff to learn (that I can remember):
■ using ' ' and '' for quotes; you should never use " (double quotes) for quotes!

- aligning/numbering equations

■ lists with different types of bullets and numbering (e.g. with letters, with roman numerals, etc.)
■ using [H] v.s. [h] v.s. [!ht] v.s. etc. for figures

- cross-referencing


## Further Reading

A list of other stuff to learn (that I can remember):
■ using ' ' and '' for quotes; you should never use " (double quotes) for quotes!

- aligning/numbering equations
- lists with different types of bullets and numbering (e.g. with letters, with roman numerals, etc.)
- using [H] v.s. [h] v.s. [!ht] v.s. etc. for figures
- cross-referencing
- bibliographies


## Further Reading

A list of other stuff to learn (that I can remember):
■ using ' ' and '' for quotes; you should never use " (double quotes) for quotes!

- aligning/numbering equations

■ lists with different types of bullets and numbering (e.g. with letters, with roman numerals, etc.)

- using [H] v.s. [h] v.s. [!ht] v.s. etc. for figures
- cross-referencing
- bibliographies
- optional parameters for \newcommand and \newenvironment


## Further Reading

A list of other stuff to learn (that I can remember):
■ other math mode commands

## Further Reading

A list of other stuff to learn (that I can remember):
■ other math mode commands

- mathematical symbols


## Further Reading

A list of other stuff to learn (that I can remember):
■ other math mode commands

- mathematical symbols
- drawing figures (I only skimmed over it)


## Further Reading

A list of other stuff to learn (that I can remember):

- other math mode commands
- mathematical symbols
- drawing figures (I only skimmed over it)
- presentations (in Beamer, like this one!)


## Further Reading

A list of other stuff to learn (that I can remember):

- other math mode commands
- mathematical symbols
- drawing figures (I only skimmed over it)
- presentations (in Beamer, like this one!)

■ various document classes (e.g. article, scrartcl, book, beamer, etc.)

## Further Reading

A list of other stuff to learn (that I can remember):

- other math mode commands
- mathematical symbols
- drawing figures (I only skimmed over it)
- presentations (in Beamer, like this one!)

■ various document classes (e.g. article, scrartcl, book, beamer, etc.)

- converting to a local setup (download $T_{E} X$ Live, then some source code editor; please read these FAQ's on Evan's website)


## Cat pic

idk


Thanks to Dennis Chen for proofreading these slides.

