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In this handout we explore the basics of invariants and monovariants,
including the application of techniques like AM-GM and weighting. Special
thanks to Pranav Sriram’s Olympiad Combinatorics and AMSP Combinatorics
3 for most of these problems.
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Invariant
An invariant is a property or quantity that does not change under certain operations.

Monovariant
A semi-invariant or monovariant is a quantity that always increases or always de-
creases after the corresponding operation.

â1.2 More Exposition

Classical examples of invariants are parity or algebraic expressions such as sums or
products. Finding an invariant is a common idea in problems asking to prove that
something cannot be achieved. Monovariants are also very efficient in showing that the
corresponding process must stop after finitely many moves.

â2 Classics
I’ll skip over the “find the invariant and win” questions, since those just involve algebraic
manipulation. In other words, I’m skipping over to the main course.1 In these problems
we do one of three things (or a combination of them):

1. use algorithms, or

2. use modular arithmetic, or

3. use AM-GM.

Note AM-GM is for bounding.

Example 1 (ISL 1989)
A natural number is written in each square of an m× n chessboard. The allowed move
is to add an integer k to each of two adjacent numbers in such a way that nonnegative
numbers are obtained (two squares are adjacent if they share a common side). Find a
necessary and sufficient condition for it to be possible for all the numbers to be zero
after finitely many operations.

Walkthrough. Let Sb and Sw denote the sum of numbers on black and white squares,
respectively.

1. Show that Sb − Sw is invariant. The following figure might help:

5 2 5 6

7 3 2 1

8 7 6 4

→

5 2 5 6

7 3 2 1

8 7 2 0

1Try the problems in the problem set if you would like to see examples of these.
2
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Thus, it seems that in order for all the numbers to be 0 at the end, we must have
Sb − Sw = 0. We’ll try to prove that this is the only thing we need to reach 0s at the end.
Suppose a, b, c are numbers in cells A, B, C respectively, where A, B, C are cells such that
A and C are both adjacent to B.

2. Find an algorithm for reducing a positive integer to 0 when a ≤ b and an algorithm
for when a ≥ b. Hint: play around with both cases using actual numbers.

3. Apply your algorithms in each row until all but the last two entries of each row
are 0. Note that this just means that all columns besides the last 2 are filled with
zeroes.

4. Apply the algorithm vertically until only two adjacent nonzero numbers remain.
Clearly one of them is black square and the other is a white square.

5. Show that these two squares can only be cancelled if Sb = Sw and finish.

This implies an important heuristic: use an invariant to show a condition is necessary,
and use an algorithm to show it’s sufficient.

Example 2 (ELMO 1999)
Jimmy moves around on the lattice point. From points (x, y) he may move to any of
the points (y, x), (3x,−2y), (−2x, 3y), (x + 1, y + 4) and (x− 1, y− 4) show that if he
starts at (0, 1) he can never get to (0, 0).

Walkthrough.

1. The sum of the coordinates of (x, y) in modulo 5 is x+ y (mod 5). What about after
we apply the operations? (You’ll have to consider each operation individually.)

2. Can the resulting sum of coordinates ever be 0 (mod 5) if we start with a sum of
coordinates 1 (mod 5)?

Always try invariants like:

1. sums

2. products

3. AM/GM/HM

This helps motivate what modulo is necessary.

Example 3 (ISL 2014)
The number 1 is written on each of 2n sheets of paper. Each minute we are allowed
to choose two distinct sheets, erase the two numbers a and b appearing on them and
writing the number a + b instead on both sheets. Prove that after n2n−1 minutes the
sum of the numbers on all sheets is at least 4n.

Walkthrough. Let P be the product of the numbers on the sheets. Note that P ≥ 1.

1. Show that by AM-GM,
(a + b)2 ≥ 4ab.

Alternatively, you can use trivial inequality.
3
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2. After one operation, show the new product is (a+b)2

ab P ≥ 4P.

3. Thus, after n2n−1 minutes the product is at least 4n·2n−1
.

4. Using AM-GM again, show that

S
2n ≥

2n√
P.

5. Manipulate the above to get S ≥ 4n as desired.

Example 4
The numbers 1, 2, . . . , 2008 are written on a blackboard. Every second, Jimmy erases
four numbers of the form a, b, c, a + b + c, and replaces them with the numbers a +
b, b + c, c + a. Prove that this can continue for at most 10 minutes.

Walkthrough.

1. The obvious invariant: the sum never changes. The obvious monovariant: the
number of terms decreases by 1 each second. Find the non-obvious invariant.

2. Let x1, x2, . . . , xn be on the blackboard. Then by Cauchy-Schwarz,

n(x2
1 + x2

2 . . . + x2
n) ≥ (x1 + x2 + . . . + xn)

2.

Plug in the two invariants to find the lower bound of n.

3. If there must be n terms on the blackboard, then at most 2008− n seconds have
passed. Show that our lower bound guarantees that at most 10 minutes have
passed as desired.

Example 5 (St. Petersburg 2013)
There are 100 numbers from the interval (0, 1) on the board. Every minute we can
replace two numbers a, b on the board with the roots of x2 − ax + b = 0 (if it has two
real roots). Prove that this process must stop at some moment.

Walkthrough. Assume (for the sake of contradiction) the process is endless. Let N < 1
be a real number such that all of the 100 initial numbers are smaller than N.

1. Prove that if a, b < N then
a +
√

a2 − 4b
2

< N.

Thus, all numbers on the board will always be smaller than N.

2. Let S and P be the sum and product of the numbers on the board, respectively.
Furthermore, let S0 and P0 be the sum and product of the initial 100 numbers.
Prove that

S < S0 P >
P0

NM .

3. Apply AM-GM to get S ≥ 100 100
√

P. Show that this gives us a contradiction for
sufficiently large M.

4
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Fact 6. When sums and products are used in invariant/monovariant questions, it is a
good idea to use AM-GM.

Now for a monovariant:

Example 7 (ISL 2012)
Several positive integers are written in a row. Alice chooses two adjacent numbers
x and y such that x > y and x is to the left of y, and replaces the pair (x, y) by either
(y + 1, x) or (x− 1, x). Prove that she can perform only finitely many such iterations.

Walkthrough. I’ll let you do this one (basically) by yourself:

1. Show that
S = a1 + 2a2 + . . . + kak + . . . + nan

is monovariant.

2. Hint: what is the difference between the new value of S and the old one after we
perform a move?

â3 Brutal Examples

Example 8 (ToT 2016)
On a blackboard several polynomials of degree 37 are written, each of them having
leading coefficient equal to 1 and all coefficients nonnegative.

It is allowed to erase any pair of polynomials f , g and replace it by another pair
of polynomials f1, g1 of degree 37 with leading coefficients to 1 such that either
f1 + g1 = f + g or f1g1 = f g.

Can we reach a blackboard on which all polynomials have 37 distinct positive roots?

Walkthrough. Let

f = X37 + a1X36 + . . . + a37, g = X37 + b1X36 + . . . + b37,

f1 = X37 + c1X36 + . . . + c37, g1 = X37 + d1X36 + . . . + d37.

1. Show that regardless of if we have f1 + g1 = f + g or f1g1 = f g, we will always
have a1 + b1 = c1 + d1.

2. Show that this implies the sum of the coefficients of X36 of f g or f + g is invariant.

3. Show that at every step, one of the two polynomials will have a nonnegative
coefficient for X36.

4. Use Vieta’s to finish.

Fact 9. If we have more than one option as to what to turn the objects into (e.g. the
ToT 2016 problem), it is often good to find a way to find an invariant that works for
all options.

The following is not necessarily hard, but realizing the weighting is nontrivial.

5
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Example 10
The first quadrant is divided into unit squares. We are allowed to perform the
following move: if the square (x, y) has a token, while (x, y + 1), (x + 1, y) are empty,
then we take the token on (x, y) and put a token on each of the other two squares.

Initially, we have tokens on (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1). Can we clear these
six squares by a sequence of moves?

Walkthrough. Assign the weight 1
2x+y to the cell (x, y) if there is a token at (x, y) , and

assign it a weight of 0 otherwise, for all positive integers x, y.

1. Prove that the sum of all the weights in the first quadrant is invariant. Furthermore,
show that the sum is 11

16 .

2. If none of the six initial squares have a token, then what is the maximum sum of
all weights? (Hint: maximum is achieved when we put weights in every eligible
location.)

3. Show that this maximum sun can never equal 11
16 , contradiction.

Fact 11. Sometimes weighting is important for invariant questions, especially grid
problems.

In general, when there’s symmetry, attempt to weight the objects.

Example 12 (Russia 2014)
The polynomials X3 − 3X2 + 5 and X2 − 4X are written on the blackboard. If the
polynomials f (X) and g(X) are written on the blackboard, we are allowed to write
down the polynomials f (X)± g(X), f (X) · g(X), f (g(X)) and c · f (X), where c is an
arbitrary real constant. Can we write a nonzero polynomial of form Xn − 1 after a
finite number of steps?

Walkthrough.

1. Show that if f ′ and g′ have a common root z, then z is a common root of ( f ±
g)′, (c f )′, ( f · g)′ and ( f ◦ g)′.

2. Find the common root of the derivatives of the initial two polynomials.

3. Show that the derivative of Xn − 1 cannot have a root of 2.

Example 13 (RMM SL 2016)
Start with any finite list of distinct positive integers. We may replace any pair n, n + 1
(not necessarily adjacent in the list) by the single integer n− 2, now allowing negatives
and repeats in the list. We may also replace any pair n, n + 4 by n− 1. We may repeat
these operations as many times as we wish. What is the most negative integer which
can appear in a list?

Walkthrough. We’ll try to artificially create an invariant.

1. Let ω be a solution to xn + xn+1 = xn−2. Show that it is also a solution to xn +
xn+4 = xn−1. (Hint: divide by xn.)

6
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2. In any list, give the number n a weight of ωn for any n appearing in that list. Show
that the sum of the weights in the list at any step is invariant.

3. Show that
∑

n∈L

xn ≤ x−4.

4. Show that the above step implies there can’t be any n’s on the LHS that are less
than or equal to −4.

5. Show that −3 can appear in a list.

Remark 14. The invariant in this problem is similar to the one in Conway’s soldiers. The
motivation behind this is recursion, then transfer it to a characteristic polynomial. Note that
this is again a weighting problem.

Fact 15. For most invariant/monovariant questions, it is pretty easy to identify if the
answer is yes or no (otherwise it wouldn’t be a invariant/monovariant question!).
The hard part is proving why your claim is true.

7
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â4 Problems

â4.1 Appetizer

Problem 1. The cells of a 7× 7 board are chess-painted (alternating colors) so that the
corners are black. One is allowed to repaint any two adjacent cells to the opposite color.
Is it possible to repaint the entire board white using such operations?

Problem 2. The numbers 1, 2, . . . , 20 are written on the board. One is allowed to erase
any two numbers a and b and instead write the number a + b− 1. What number can
remain on the board after 19 such operations?

Problem 3. Given a 1000-digit number with no zeroes, prove that from this number
you can delete several (or none) last digits so that the resulting number is not a natural
power less than 500 (a1 is not considered a power).

Problem 4. The numbers 1 through 1000 are written on the board. One is allowed to
erase any two numbers and and write the numbers ab and a2 + b2 instead. Is it possible
with such operations to ensure that among the numbers written on the board, there are
700 at least that are the same?

Problem 5. Initially we have the numbers 49
1 , 49

2 , . . . , 49
97 on a board. A move consists in

replacing two numbers, say a and b, with 2ab− a− b + 1. After a series of moves, there
is only one number left on the board. Find it!

â4.2 Entree

Problem 6 (Russia 2008). A natural number is written on the blackboard. Whenever a
number x is written, one can write either the number 2x + 1 or x

x+2 . At some point the
number 2008 appears on the blackboard. Show that it was there from the beginning.

Problem 7 (Saint Petersburg 2020). The points (1, 1), (2, 3), (4, 5) and (999, 111) are
marked in the coordinate system. If points (a, b) are marked then (b, a) and (a− b, a + b)
can be marked. If points (a, b) and (c, d) are marked then so can be (ad + bc, 4ac− 4bd).
Can we, after some finite number of these steps, mark a point belonging to the line
y = 2x?

Problem 8 (Tuymaada Junior 2018). The numbers 1, 2, 3, . . . , 1024 are written on a
blackboard. They are divided into pairs. Then each pair is wiped off the board and
non-negative difference of its numbers is written on the board instead. 512 numbers
obtained in this way are divided into pairs and so on. One number remains on the
blackboard after ten such operations. Determine all its possible values.

8
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â4.3 Dessert

Full yet?

Problem 9. The numbers 1, 2, . . . , n are written on a blackboard. Each minute, a student
goes up to the board, chooses two numbers x and y, erases them, and writes the number
2x + 2y on the board. This continues until only one number remains. Prove that this
number is at least 4

9 n3.

Problem 10. Let n be a fixed positive integer. Initially, n 1’s are written on a blackboard.
Every minute, David picks two numbers x and y written on the blackboard, erases them,
and writes the number (x + y)4 on the blackboard. Show that after n− 1 minutes, the

number written on the blackboard is at least 2
4n2−4

3 .

Problem 11 (USAMO 2019/5). Two rational numbers m
n and n

m are written on a black-
board, where m and n are relatively prime positive integers. At any point, Evan may
pick two of the numbers x and y written on the board and write either their arithmetic
mean x+y

2 or their harmonic mean 2xy
x+y on the board as well. Find all pairs (m, n) such

that Evan can write 1 on the board in finitely many steps.

Problem 12 (Russia 2017). Initially a positive integer n is on the blackboard. Every
minute we are allowed to take a number a on the blackboard, erase it and write instead
all divisors of a except for a. After some time there are n2 numbers on the blackboard.
For which n is this possible?

Problem 13 (Iran RMM TST 2020). A 9× 9 table is filled with zeroes. At every step we
can either take a row, add 1 to every cell and shift it one unit to the right (the rightmost
number in that row ends up in the leftmost position of the row) or take a column,
subtract 1 from every number on that column and shift it one cell down (with the same
convention as for rows). Can the table with the top right −1 and bottom left +1 and all
other cells zero be reached?

9
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â5 Selected Solutions

â5.1 Solution 1 (ISL 1989)

The following solution is by Pranav Sriram:
Note that in each move, we are adding the same number to 2 squares, one of which is

white and one of which is black (if the chessboard is colored alternately black and white).
If Sb and Sw denote the sum of numbers on black and white squares, respectively, then
Sb − Sw is an invariant. Thus if all numbers are 0 at the end, Sb − Sw = 0 at the end and
hence Sb − Sw = 0 in the beginning as well. Thus, this condition is necessary; now we
prove that it is sufficient.

5 2 5 6

7 3 2 1

8 7 6 4

→

5 2 5 6

7 3 2 1

8 7 2 0

Figure 1: A move on the m× n board

Suppose a, b, c are numbers in cells A, B, C respectively, where A, B, C are cells such that
A and C are both adjacent to B. If a ≤ b, we can add (−a) to both a and b, turning a to 0.
If a ≥ b, then add a− b to b and c. Then b becomes a, and now we can add −a to both
of them, making them 0. Thus we have an algorithm for reducing a positive integer to
0. Apply this in each row, making all but the last 2 entries 0. Now all columns have
only zeroes except the last two. Now apply the algorithm starting from the top of these
columns, until only two adjacent nonzero numbers remain. These two numbers must be
equal since Sb = Sw. Thus we can reduce them to 0 as well.

â5.2 Solution 2 (ELMO 1999)

Let us take mod 5 of x + y. Note that since

3x− 2y ≡ 3(x + y) (mod 5),

−2x + 3y ≡ 3(x + y) (mod 5),

x + 1 + y + 4 ≡ x + y (mod 5),

x− 1 + y− 4 ≡ x + y (mod 5),

the sum of the two coordinates is either constant or multiplied by 3. Thus, (0, 0) cannot
be achieved.

â5.3 Solution 3 (ISL 2014)

Consider the product P of the numbers on the sheets. Say we choose a, b and replace
them by a+ b, a+ b. The quotient between the product of all numbers after the operation
and the one before the operation is (a+b)2

ab , which by AM-GM is greater than or equal to
4. Thus, the product is at least 4n·2n−1

, and by AM-GM again, we get that the sum S is(
S
2n

)2n

≥ P,
10
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implying the desired result S ≥ 4n.

â5.4 Solution 4

Note that a + b + c + (a + b + c) = (a + b) + (b + c) + (c + a). Thus, for every operation
he does, the sum is constant, but the number of terms decreases by 1. Even more
important,

a2 + b2 + c2 + (a + b + c)2 = (a + b)2 + (b + c)2 + (c + a)2,

implying the sum of squares is also invariant. Let x1, x2, . . . , xn be on the blackboard.
Then by Cauchy-Schwarz,

n(x2
1 + x2

2 . . . + x2
n) ≥ (x1 + x2 + . . . + xn)

2.

Taking into account our two invariants, we obtain

n ≥ (1 + 2 + . . . + 2008)2

12 + 22 + . . . + 20082 = 1506 +
502
1339

,

implying this can take place at most 2008− 1506 = 502 times, which is less than 600
seconds, or 10 minutes.

â5.5 Solution 5 (St. Petersburg 2013)

Suppose this process is endless. There exists a real number N < 1 such that all of the
100 initial numbers are smaller than N. If a, b < N, we get

a +
√

a2 − 4b
2

< N.

Thus, all numbers on the board will always be smaller than N. Denote S and P as the
sum and product, respectively, of all numbers on the board. Furthermore, let S0 and
P0 be the sum and product of the initial 100 numbers. Each move gives us S → S− b
and P→ P

a > P
N . After M moves, we get that S < S0 and P > P0

NM . By AM-GM, we get
S ≥ 100 100

√
P. This gives us a contradiction for sufficiently large M, implying the desired

result.

â5.6 Solution 7 (ISL 2012)

Clearly the maximum number on the board does not change, say it was M initially. Let
a1, a2, . . . , an be the numbers on the board. I claim the quantity

S = a1 + 2a2 + . . . + kak + . . . + nan

always increases. Say that at some moment x > y with x to the left of y and x in position
i. The difference between the new value of S and the old one is either

i(y + 1) + (i + 1)x− (ix + (i + 1)y) = x− y + i ≥ 1

or

i(x− 1) + (i + 1)x− (ix + (i + 1)y) = −i + (i + 1)(x− y) ≥ −i + i + 1 = 1,

proving the claim and the desired result.
11
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â5.7 Solution 8 (ToT 2016)

Suppose that
(X37 + a1X36 + . . . + a37)(X37 + b1X36 + . . . + b37)

= (X37 + c1X36 + . . . + c37)(X37 + d1X36 + . . . + d37).

Looking at the coefficient of X36+37 we obtain

a1 + b1 = c1 + d1.

This also holds if

(X37 + a1X36 + . . . + a37) + (X37 + b1X36 + . . . + b37)

= (X37 + c1X36 + . . . + c37) + (X37 + d1X36 + . . . + d37).

Thus, the sum of coefficients of X36 is invariant. Since initially all coefficients are
nonnegative, at each step the sum of coefficients of X36 stays nonnegative. This implies
that at least one polynomial, say P(X) = X37 + a1X36 + . . . + a37, has a1 ≥ 0 at every
step. If x1, x2, . . . , x37 are the complex roots of P, then

x1 + x2 + . . . + x37 = −a1 ≤ 0.

Thus, the polynomial cannot have 37 positive roots, which implies the desired result.

â5.8 Solution 10

Consider the sum of 1
2x+y over all pairs (x, y) for which there is a token at (x, y). Thus,

1
2x+(y+1)

+
1

2(x+1)+y
=

1
2x+y ,

implying the sum is invariant. Initially, the sum is

1
22 +

2
23 +

3
24 =

11
16

.

Suppose that at some moment the six initial squares have no token. Then the sum is at
most

∑
x,y≥1

1
2x+y −

11
16

= 1− 11
16

=
5
16

,

which is a contradiction, proving the desired result.

â5.9 Solution 12 (Russia 2014)

Let f (X) = a0 + a1X + . . . + anXn, then its derivative is

f ′(x) = a1 + 2a2X + . . . + nanXn−1.

This satisfies all conditions, because

( f ± g)′ = f ′ ± g′,

(c f )′ = c f ′,

( f · g)′ = f ′ · g + g′ · f ,

( f ◦ g)′ = ( f ′ ◦ g) · g′.
Thus, if f ′ and g′ have a common root z, then z is a common root of ( f ± g)′, (c f )′, ( f · g)′
and ( f ◦ g)′. The derivatives of the initial polynomials are 3X2 − 6X and 2X− 4, and 2
is a common root. However, (Xn − 1)′ = nXn−1 does not have the root X = 2, implying
we can never get Xn − 1.

12
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â5.10 Solution 13 (RMM SL 2016)

Let’s look for an invariant of the form ∑n∈L xn, where L is a subset of Z. To have an
invariant, we want

xn + xn+1 = xn−2,

xn + xn+4 = xn−1,

for all n. This reduces to
x2 + x3 = 1,

x5 + x = 1,

which is easily solvable since they are secretly the same equation, because

x5 + x− 1 = (x3 + x2 − 1)(x2 − x + 1).

Thus, we choose ω such that ω3 + ω2 = 1 and get ∑n∈L ωn is constant, where L is the
list at any step. Thus,

∑
n∈L

ωn ≤ ∑
n≥1

ωn =
ω

1−ω
= ω−4.

This must be true for all steps, and since 0 < ω < 1, we know that n > −4. Working
backwards from −3, we find that an initial list of 1, 2, 3, 4, 5 will generate −3, implying
−3 works.

13
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