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It’s time for modular arithmetic!

”I have a truly marvelous demonstration of this proposition which this margin is too narrow to contain.” -
Pierre de Fermat
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§1 Introduction

§1.1 Number Theory

Number theory deals with the properties and relationships between numbers, especially positive integers.

Definition 1.1 (Prime & Composite) — If an integer has no positive divisors other than 1 and itself, it is
said to be prime; otherwise, it is said to be composite. Note that 1 is considered composite.

Definition 1.2 (Multiples & Factors) — An integer a is said to be a multiple of another integer b if there
exists an integer k such that a = kb. The integer b here is said to be called a factor or a divisor of a.

From this, we see that if a is a multiple of b, then b is a factor of a.

Definition 1.3 (Prime Factorization) — Any integer N can be written as the product of the primes it is
divisible by. The prime factorization of N is

N =
∏
p∈P

pei = 2e1 · 3e2 · 5e3 · . . . ,

where P is the set of positive primes and {ei} is a sequence of integers determining how many times the ith
prime number can be divided out of N . For example, 144 = 22 · 32 and 35 = 51 · 71.

§1.2 Bases

To understand the notion of base numbers, we look at our own number system. We use the decimal, or
base-10, number system. To help explain what this means, consider the number 2746. This number can be
rewritten as 123410 = 1 · 103 + 2 · 102 + 3 · 101 + 4 · 100.

Note that each number in 1234 is actually just a placeholder which shows how many of a certain power of 10
there are. The first digit to the left of the decimal place (recall that the decimal place is to the right of the 6, i.e.
2746.0) tells us that there are six 100’s, the second digit tells us there are four 101’s, the third digit tells us there
are seven 102’s, and the fourth digit tells us there are two 103’s.

Base-10 uses digits 0-9. Usually, the base, or radix, of a number is denoted as a subscript written at the right
end of the number (e.g. in our example above, 274610, 10 is the radix).

To learn how to convert bases, read this.

§1.3 Divisibility

Let us first formally define divisibility.

Definition 1.4 (Divisibility) — Let a, b ∈ Z. We say that b divides a if there exists an integer k such that
a = kb. The number b is called a divisor or factor of a, and the number a is called a multiple of b. We
write b|a to denote that b divides a.

Theorem 1.5 (Division Theorem)

Let a, b ∈ Z with b 6= 0. Then there exist unique integers q, r ∈ Z such that a = bq + r and 0 ≤ r < |b|.

Proof. First, note that if a = 0, then q = 0, r = 0 is the unique solution to the equation given.

4
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We consider all other cases according to the signs of a and b.
Case 1: b > 0, a > 0. In order to prove the theorem, there are two parts: first, to show the existence of these

integers q, r, and second, to show their uniqueness.
For the existence, for each n ≥ 0 define rn = a − nb. Let S = {rn | rn ≥ 0}, that is, S is the set of those

rn that are nonnegative. Note that r0 = a > 0, so S is nonempty. By the Well-Ordering Principle,, S has a
minimum element, say rk = a− kb. Then a = kb+ rk, by definition. Moreover, rk+1 = a− (k+ 1)b = rk− b < rk,
so rk+1 /∈ S, since rk is the minimum of S. But this implies that rk+1 < 0, so rk − b < 0, and hence rk < b.
Therefore, we have found integers k, rk such that a = kb+ rk and 0 ≤ rk < |b| = b, and the existence of such
integers is thus established.

For the uniqueness, suppose that a = qb+ r = q′b+ r′, where q, q′, r, r′ ∈ Z and 0 ≤ r, r′ < b. By rearranging
this equation, we have qb − q′b = r′ − r, so b(q − q′) = r′ − r. Thus, b|(r′ − r). On the other hand, since
0 ≤ r, r′ < b, we have that −b < r′ − r < b. Note, if q − q′ > 0, then b(q − q′) > b, which is impossible. If
q − q′ < 0, then b(q − q′) < −b, which is also impossible. Therefore, it must be the case that q − q′ = 0, which
implies r′ − r = 0, and thus the representation of a is unique.

Case 2: b < 0, a > 0. Note that any presentation of a = qb+ r also implies a = (−q)(−b) + r. The choice of
−q, r are both exist and are unique by Case 1.
Case 3: b > 0, a < 0. By Case 1, we have a unique q, r such that −a = (−q)b + r, with 0 ≤ r < b. Hence

there is a unique q, r such that a = qb− r, with 0 ≤ r < b. If r = 0, this is sufficient for the problem. If r 6= 0,
we can write a = (q − 1)b+ (b− r), then, and 0 < b− r < b. Uniqueness will follow by an argument identical to
that in Case 1.
Case 4: b < 0, a < 0. By Case 2, we have a unique q, r such that −a = (−q)b+ r, with 0 ≤ r < b. Proceed

as in Case 3 to construct a solution for a.

Definition 1.6 (Quotient & Remainder) — Let a, b ∈ Z, with b 6= 0 and let q, r be numbers such that
a = qb+ r, where r < b. We say that q is the quotient of a divided by b, and the r is the remainder of a
divided by b.

Definition 1.7 (Greatest Common Divisor) — Let a, b ∈ Z. An integer d is called a greatest common divisor
of a, b, frequently abbreviated as a gcd of a, b if the following two conditions are met:

• d|a and d|b, and

• if q|a and q|b, then q|d.

Theorem 1.8 (Existence of GCD)

Let a, b ∈ Z. Then a and b have a gcd.

Proof. First, if both a and b are 0, then 0 is a gcd for a and b, since 0 is divisible by q for every q ∈ Z.
If a is negative, we can replace a with −a without impacting the divisibility properties of a. Likewise, if b is

negative, we can replace it with −b. Hence, we may proceed assuming that both a and b are nonnegative, and at
least one of a, b is nonzero. Wolog, suppose that a 6= 0.

Define X = {n ∈ N | n = au + bv for some u, v ∈ Z}. Notice that a = a · 1 + b · 0 and a > 0, so a ∈ X.
Therefore, X 6= ∅, and X is a subset of N, so by the Well Ordering Principle X has a minimum. Let d = min(X).

Claim 1. d|a.

5
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Proof of Claim 1. By the Division Theorem, there exist unique q, r ∈ Z such that a = qd+ r, and
0 ≤ r < d. Moreover, as d ∈ X, there exist u, v ∈ Z such that d = au+ bv. Hence, we have

r = a− qd
= a− q(au+ bv)

= (1− qu)a+ (−qv)b.

Hence, if r > 0, we must have r ∈ X. However, since r < d, we cannot have r ∈ X, since d = min(X).
Therefore, r = 0, so a = qd and d|a.

By the same technique, we can establish the following claim:

Claim 2. d|b.

Hence, we have that d is a common divisor to both a and b. It remains to establish the second property for a
gcd, namely, that if q|a and q|b, we also have q|d.

To that end, suppose that q is a common divisor of a and b, so that there exist integers k, ` such that a = kq
and b = `q. Then we have

d = au+ bv = kqu+ `qv = q(ku+ `v),

and thus q|d.
Therefore, d meets the definition of a gcd for a, b, and thus a gcd must exist.

Theorem 1.9 (Properties of GCD)

Let a ∈ Z. Then

• gcd(a, 0) = a.

• gcd(a, 1) = 1.

• For all k ∈ Z, gcd(a, ka) = a

There also exists the least common multiple:

Definition 1.10 (Least Common Multiple) — The least common multiple of two numbers a, b is, like
the greatest common factor, defined by its name. It is the smallest multiple m in which a|m and b|m.

Theorem 1.11 (Product of LCM and GCM)

For integers a, b,
gcd(a, b) · lcm(a, b) = ab.

What happens when gcd(a, b) = 1? We call that coprime, or relatively prime:

Definition 1.12 (Coprime) — Let a, b ∈ Z. We say that a and b are coprime, if a and b share no common
factors. That is to say, a and b are coprime if gcd(a, b) = 1. We write a ⊥ b to denote that a and b are
coprime.

6
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Theorem 1.13 (Coprime Conditions)

Let a, b ∈ Z be nonzero, and let d = gcd(a, b). Then

• a
d and b

d are coprime.

• Write a = dk for some k ∈ Z. Then for y ∈ Z, if a|(dy), then k|y.

§1.4 Introduction to Modular Arithmetic

Let us start with a motivating example.

Remark 1.14. When learning a new topic, try to find the motivation behind every idea. This will allow you to
realize when to use what idea!

Example 1.15

Suppose it is 1 : 00 now. What time will it be exactly 1000 hours from now?

Solution. The key to solving this problem is realizing that the times will repeat themselves every 12 hours. In
other words, the time will be 1 : 00 whenever the number of hours from now is a multiple of 12.

What is the multiple of 12 that is closest to 1000? After some experimentation, we see that the closest multiple
is 996, so 996 hours from now it will be 1 : 00 as well. Thus, exactly 1000 hours from now the time will be
5 : 00 .

For example, because 4, 16, 1000, and 4252 all share the same remainder when divided by 12, the following
equation is valid:

4 ≡ 16 ≡ 1000 ≡ 4252 (mod 12).

§2 Modular Congruences

Let us start with a problem involving congruences:

Example 2.1

We have a clock with six numbers on its face: 0, 1, 2, 3, 4, and 5. The clock only hand moves clockwise from
0 to 1 to 2 to 3 to 4 to 5 and back again to 0.

1. What number is the hand pointing at after 12 ticks?

2. What number is the hand pointing at after 28 ticks?

3. What number is the hand pointing at after 42 ticks?

4. What number is the hand pointing at after 1337 ticks?

7
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Solution. We start by listing the first 30 numbers in the list and the first 30 positive integers side by side:

1 2 3 4 5 0 1 2 3 4 5 6
1 2 3 4 5 0 7 8 9 10 11 12
1 2 3 4 5 0 13 14 15 16 17 18
1 2 3 4 5 0 19 20 21 22 23 24
1 2 3 4 5 0 25 26 27 28 29 30

We can see that the answers to parts 1 and 2 are 0 and 4, respectively. We can also notice that each number on
the left grid is the remainder of each number on the right grid when divided by 6. Hence, we see that the answer
to part 3 is the remainder when 42÷ 6, which is 0, and that the answer to part 4 is 1337÷ 6, which is 5.

§2.1 Congruences

Definition 2.2 (Congruence) — Two integers are said to be equivalent (or congruent) modulo a if their
difference is a multiple of a.

We shorten ”modulo” to ”mod”, and use the symbol ≡ to denote congruence. For example,

12 ≡ 0 (mod 6) and 32 ≡ 16 (mod 4).

For integers x and y, y ≡ x (mod a) if and only if m | x − y. Hence, for an integer z, we have x − y = za.
Isolating z gives us z = x−y

a . If z is an integer, then y ≡ x (mod a).

Theorem 2.3 (Congruence Condition)

for positive integers x and y, x ≡ y (mod a) if and only if

x = z1a+ w, and
y = z2a+ w,

where z1, z2, and w are integers, and 0 ≤ w < a.

Example 2.4

How many positive integers less than 12 are relatively prime to 12?

§2.2 Fermat’s Little Theorem and Euler’s Totient Theorem

Solution. We know that 1, 5, 7, and 11 are relatively prime to 12, so the answer is 4.

What if we replaced 12 with 100? Or what if we used 10000? That would take a very long time. So instead
we use Euler’s totient function:

Definition 2.5 (Euler’s Totient Function) — The totient function φ(n) is defined as the number of positive
integers less than n that are relatively prime to n.

Remark 2.6. Definitions are very important. If we had defined it by the theorem, it would be so much harder to
relate it to relatively prime. There also would have been no motivation for this idea.

8
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Theorem 2.7 (Euler’s Totient Function)

If n = pe11 p
e2
2 · · · pemm , then φ(n)

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
.

Now for a few identities:

• For prime p, φ(p) = p− 1, because all numbers less than p are relatively prime to it.

• For relatively prime a, b, φ(a)φ(b) = φ(ab).

• In fact, we also have for any a, b that φ(a)φ(b) gcd(a, b) = φ(ab)φ(gcd(a, b)).

• If p is prime and n ≥ 1,then φ(pn) = pn − pn−1.

There isn’t much to learn about the Totient Function, since it appears very rarely. Let us turn to its relation
with modular arithmetic. There are always the problems that ask for the last two/three/four/etc. digits of
some large operation (for example, 10243. Even using a calculator won’t help. So instead, we use the following
methods:

Theorem 2.8 (Fermat’s Little Theorem)

Let p be a prime number and a be an integer relatively prime to p. Then

ap−1 ≡ 1 (mod p).

Remark 2.9. However, remember: only use powerful techniques when you have to. If the problem is find the last
digit of 24, the following methods will be overkill.

Let’s try an example:

Example 2.10

Find the remainder when 2304 is divided by 7.

Solution. Using Fermat’s Little Theorem with a = 2 and p = 7, we get

26 ≡ 1 (mod 7).

Note that
2304 = 2300 · 24 = (26)50 · 24,

so
(26)50 · 24 ≡ 150 · 16 ≡ 16 ≡ 2 (mod 7).

Notice how Fermat’s Little Theorem doesn’t directly answer the problem, but by taking out all the 26s, we were
able to get our answer. However, this leaves us with an issue - what if the modulo isn’t prime? For example, to
find the last digit, we have to take mod 10, but 10 isn’t prime. How can we solve the problem?

9
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Theorem 2.11 (Euler’s Totient Theorem)

Let a and n be relatively prime integers. Then

aφ(n) ≡ 1 (mod n).

Remark 2.12. Notice that this is a generalized form of Fermat’s Little Theorem.

Let’s turn to an example:

Example 2.13

Find the last two digits of 383.

Solution. We know that this is the same as taking mod 100. Using Euler’s Totient Theorem with a = 3 and
n = 100, we get

3φ(100) ≡ 1 (mod 100).

Using the formula for finding φ(n), we get φ(100) = 40. Thus,

340 ≡ 1 (mod 100).

Notice that
383 = 380 · 33 = (340)2 · 33,

so
(340)2 · 33 ≡ 12 · 27 ≡ 27 (mod 100),

so the last two digits are 27.

§2.3 Exercises

Exercise 2.14. How many numbers under 1000 are relatively prime to 1000?

Exercise 2.15. Find the value of φ(12) and φ(1001).

Exercise 2.16. Find the last two digits of 31284.

Exercise 2.17. Find the last two digits of 640 + 840. (Note: this question is hard! You cannot apply any of
the theorems listed above on your first step, since 6 and 8 are not relatively prime to 100)

Exercise 2.18. Find φ(φ(1000)).

Exercise 2.19. Jimmy takes a one digit number to the fourth power and the last digit is 1. He takes it to
the fifth power and the last digit is 3. What is his number?

§3 Residues

§3.1 Introduction

We say that b is the modulo-a residue of c when c ≡ b (mod a), and 0 ≤ b < a.

10
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§3.2 Residue Classes

We begin with a problem.

Example 3.1

List the integers between -70 and 70 whose modulo 12 residues are 10.

Solution. An integer is congruent to 10 mod 12 if it can be written as 12a+ 10 for any integer a. This gives us
the inequality

−70 < 12a+ 10 < 70.

Subtracting 10 from all sides gives us
−80 < 12n < 60,

and dividing by 12 gives

−6
2

3
< n < 5.

Thus, we have
n = −6 : 12(−6) + 10 = −62
n = −5 : 12(−5) + 10 = −50
n = −4 : 12(−4) + 10 = −38
n = −3 : 12(−3) + 10 = −26
n = −2 : 12(−2) + 10 = −14
n = −1 : 12(−1) + 10 = −2
n = 0 : 12(0) + 10 = 10
n = 1 : 12(1) + 10 = 22
n = 2 : 12(2) + 10 = 34
n = 3 : 12(3) + 10 = 46
n = 4 : 12(3) + 10 = 58

Hence, all integers b such that −70 < b < 70 and b ≡ 10 (mod 12) are

{−62,−50,−38,−26,−14,−2, 10, 22, 34, 46, 58}.

We can now define a residue class.

Definition 3.2 (Residue Class) — The integers congruent to x (mod a) are known as a residue class.
(Residue classes are also known as equivalence classes or congruence classes.)

For example, {−62,−50,−38,−26,−14,−2, 10, 22, 34, 46, 58} is a residue class of 10 (mod 12).

§3.3 Exercises

11
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Exercise 3.3. Determine the modulo-9 residue of each of the following.

1. 11

2. 45

3. 23

4. 434

5. 42

6. 1337

Exercise 3.4. Write each of the following integers in the form 3a + b, where a and b are integers and
0 ≤ b < 3.

1. 43

2. 4

3. 100

4. 98

5. 42

6. -34

7. 1337

Exercise 3.5. Show that if x ≡ y (mod a) and y ≡ z (mod a), then x ≡ z (mod a).

§4 Operations in Modular Arithmetic

§4.1 Modular Addition & Subtraction

Theorem 4.1 (Modular Addition and Subtraction)

Let a1, a2, b1, and b2 be integers such that

a1 ≡ a2 (mod n)

b1 ≡ b2 (mod n).

We can add these, and get
a1 + b1 ≡ a2 + b2 (mod n).

Proof. From the definition of congruence, we have

a1−a2
n and b1−b2

n

12
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are integers. Manipulating these expressions, we have

a1 − a2
n

=
a1 + b2 − a2 − b2

n
=

(a1 + b2)− (a2 + b2)

n
.

b1 − b2
n

=
a1 + b1 − a1 − b1

n
=

(a1 + b1)− (a1 + b2)

n
.

Since each of these quantities are integers, we have

a1 + b1 ≡ a1 + b2 (mod n)

a1 + b2 ≡ a2 + b2 (mod n).

Putting this together, we have
a1 + b1 ≡ a1 + b2 ≡ a2 + b2 (mod n).

From this we see that
a1 + b1 ≡ a2 + b2 (mod n).

Exercise 4.2. Is 54 + 42 ≡ 2 + 14 (mod 8)? Is 69− 45 ≡ 18− 15 (mod 3)?

Exercise 4.3. Let a, b, and c be integers whose residues modulo 8 are 4, 5, and 7, respectively. Compute
the residue of a+ b+ c (mod 8).

§4.2 Modular Multiplication

Theorem 4.4 (Modular Multiplication)

Let a, b, c, and d be integers. If

a ≡ b (mod m)

c ≡ d (mod m),

then
ac ≡ bd (mod m).

Proof. Since m is a divisor of a− b and c− d, we have

a = b+ xm

c = d+ ym

where x and y are integers. Expanding the product ac, we have

ac = (b+ xm)(d+ ym)

= bd+ bym+ dxm+ xym2

= bd+m(by + dx+ xym).

Since ac− bd is multiple of m, we have

ac− bd = bd+m(by + dx+ xym)− bd
= m(by + dx+ xym).

Therefore, ac ≡ bd (mod m).

13
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Exercise 4.5. Is 9 · 43 ≡ 8 · 98 (mod 23)?

Exercise 4.6. Find the modulo 4 residue of 100!.

Exercise 4.7. The residues of 3 positive integers modulo 8 are 1, 4, and 7. Find the residue of their products
modulo 8.

§4.3 Modular Exponentiation

Theorem 4.8 (Modular Exponentiation)

Let a and b be integers, and c be a natural number. If a ≡ b (mod m), then

ac ≡ bc (mod m).

Proof. We have a · a ≡ b · b (mod m) =⇒ a2 ≡ b2 (mod m). We can multiply factors of a and b to powers of a
and b to show that the next highest power of a and b are also congruent.

a · a2 ≡ b · b2 (mod m) =⇒ a3 ≡ b3 (mod m)
a · a3 ≡ b · b3 (mod m) =⇒ a4 ≡ b4 (mod m)
a · a4 ≡ b · b4 (mod m) =⇒ a5 ≡ b5 (mod m)
a · a5 ≡ b · b5 (mod m) =⇒ a6 ≡ b6 (mod m)

·
·
·

a · ac−1 ≡ b · bc−1 (mod m) =⇒ ac ≡ bc (mod m)

Exercise 4.9. Is 2414 − 1514 divisible by 9?

Exercise 4.10. Find residue r such that 56001 ≡ r (mod 7).

§4.4 Modular Division

There is no law of division in modular arithmetic. We can see this with the following example. We have the
congruence

6 ≡ 16 (mod 10),

which is true. Dividing by 2, we have
3 ≡ 8 (mod 10),

which is clearly not true.

§4.5 Modular Inverses

Definition 4.11 (Modular Inverse) — The multiplicative inverse of an integer a (mod m) is the integer

14
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a−1 such that
a · a−1 ≡ 1 (mod m).

Example 4.12

Find the inverses of all mod 12 residues that have inverses.

Solution. We write out the entire modulo 12 multiplication table:

× 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11
2 0 2 4 6 8 10 0 2 4 6 8 10
3 0 3 6 9 0 3 6 9 0 3 6 9
4 0 4 8 0 4 8 0 4 8 0 4 8

5 0 5 10 3 8 1 6 11 4 9 2 7
6 0 6 0 6 0 6 0 6 0 6 0 6

7 0 7 2 9 4 11 6 1 8 3 10 5
8 0 8 4 0 8 4 0 8 4 0 8 4
9 0 9 6 3 0 9 6 3 0 9 6 3
10 0 10 8 6 4 2 0 10 8 6 4 2

11 0 11 10 9 8 7 6 5 4 3 2 1

From this, we see that all modulo 12 residues that have inverses are 1, 5, 7, and 11, and that there exists no
inverses for residues 2, 3, 4, 6, 8, 9, and 10.

We can note that 1, 5, 7, and 11 are relatively prime to 12, and 2, 3, 4, 6, 8, 9, and 10 are not.

Theorem 4.13 (Existence of Modular Inverse)

a−1 modulo n exists only if gcd(a, n) = 1.

Proof. If a−1 exist, it is a solution to the congruence ax ≡ 1 (mod n). Thus, for some value of x,

ax− yn = 1,

where y is an integer. We let z = gcd(a, n), which means that z | ax and z | yn. A divisor of two integers is the
divisor of their difference, which means that z | (ax− yn). Since ax− yn = 1, z | 1. The only integer that is a
divisor of 1 is 1, so z = 1. Therefore, a−1 exists if gcd(a, n) = 1.

Exercise 4.14. Does 6 modulo 25 have an inverse? Why?

Exercise 4.15. Find all possible residues modulo 20 that have inverses.

From the exercise above, it is pretty hard to find modular inverses. So how can we speed up the process?
Let’s start with an example:

Example 4.16

Find the inverse of 3 modulo 7.

15
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Solution. We list the first few integers that are congruent to 1 (mod 7). They are

8, 15, 22, 29, . . .

The term 15 is of the form 3x, where x = 5. Thus, the inverse of 3 modulo 7 is 5 .
This method seems rather tedious for larger moduli and inverses - we need a systematic way to find inverses.

§4.6 The Euclidean Algorithm

The Euclidean Algorithm is used for finding the GCD of a pair of numbers. It is also for finding coefficients
x and y that, given a pair of relatively prime numbers a and b, would let us write ax+ by = 1. If a and m are
relatively prime integers, we can find integers x and y such that ax+my = 1. If we reduce this modulo m, we
get

ax ≡ 1 (mod m).

The integer x is the modular inverse of a.

Theorem 4.17 (Euclidean Algorithm)

The Euclidean Algorithm is defined on input a, b, with |a| > |b|, and produces output gcd(a, b). The
algorithm proceeds as follows:

• Initialize r0 = |a|, r1 = |b|.

• While rn > 0: define rn+1 to be the remainder of rn−1 divided by rn.

• If rn = 0, then rn−1 = gcd(a, b).

Proof. Let a, b, q, r be as in the statement of the theorem. Let d = gcd(a, b). Notice that as r = a − bq, and
both a and b are divisible by d, then r is divisible by d as well.

Moreover, suppose that d′ is an integer such that d′|r and d′|b. Then since a = qb+ r, we must also have that
d′|a. But then as d = gcd(a, b), we have that d′|d. Hence, any divisor of both r and b is also a divisor of d.

Therefore, d meets the definition of gcd for b and r. By uniqueness of the positive gcd, we therefore have that
d = gcd(b, r).

Now, let’s try an example using the Euclidean Algorithm.

Example 4.18

Find the inverse of 37 modulo 97.

Solution. We turn this into the equation 37x + 97y = 1, and solve for x. Then, we divide 97 ÷ 37 to get a
quotient of 2 and a remainder of 23. We compute 37÷ 23, and get a quotient of 1 and a remainder of 14. Next,
we compute 23 ÷ 14, and we get a quotient of 1 and remainder 9. Dividing 14 ÷ 9, we get quotient 1 and
remainder 5. 9÷ 5 has a quotient of 2 and a remainder of 4. Finally, 5÷ 4 has a quotient 1 and remainder 1.
From this we get the equations:

97 = 2 · 37 + 23

37 = 1 · 23 + 14

23 = 1 · 14 + 9

14 = 1 · 9 + 5

9 = 1 · 5 + 4

5 = 1 · 4 + 1.

16
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We rearrange these equations to isolate the remainders:

23 = 97− 2 · 37

14 = 37− 1 · 23

9 = 23− 1 · 14

5 = 14− 1 · 9
4 = 9− 1 · 5
1 = 5− 1 · 4.

Substituting, we have:

1 = 5− 1 · 4
= 5− (9− 1 · 5)

= 2 · 5− 9

= 2(14− 1 · 9)− 9

= 2 · 14− 3 · 9
= 2 · 14− 3(23− 1 · 14)

= 5 · 14− 3 · 23

= 5(37− 1 · 23)− 3 · 23

= 5 · 37− 8 · 23

= 5 · 37− 8(97− 2 · 37)

= −8 · 97 + 21 · 37.

Hence, x = 21, which means that the inverse of 37 modulo 97 is 21 , or 21 · 37 ≡ 1 (mod 97).

Exercise 4.19. Find the inverse of 5 modulo 6.

Exercise 4.20. Find the inverse of 19 modulo 21.

Exercise 4.21. Find x such that 17x ≡ 1 (mod 23).

§5 Chinese Remainder Theorem

§5.1 Linear Congruences

Definition 5.1 (Linear Congruence Equation) — A linear congruence equation is a congruence that has
a variable raised only to the first power.

Theorem 5.2 (Form of Linear Congruence)

A linear congruence can be expressed as

ax ≡ b (mod n),

where a and b are integers, a modulus n, and variable x.

17
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For example, 4x ≡ 3 (mod 6) is a linear congruence.
Let’s start by solving a few simple linear congruences, and then move on to some harder examples.

Example 5.3

Find the values of x where 0 ≤ x < 5 that satisfy the following linear congruences:

1. x− 4 ≡ 0 (mod 5).

2. x− 1 ≡ 1 (mod 5).

3. x+ 3 ≡ 1 (mod 5).

4. x+ 12 ≡ 3 (mod 5).

Solution. The numbering is the same as in the questions before:

1. Since addition is a valid operation in modular arithmetic, we can add 4 to both sides. Thus, we have
x− 4 + 4 ≡ 0 + 4 (mod 5) =⇒ x ≡ 4 (mod 5).

2. As before, we add 1 to both sides of the congruence, which gives x ≡ 2 (mod 5).

3. Since subtraction is a valid operation in modular arithmetic, we can subtract 3 from both sides. Thus, we
have x ≡ −2 ≡ 3 (mod 5).

4. Subtracting 12 from both sides, we have x ≡ −9 ≡ 1 (mod 5).

Example 5.4

Find the values of x where 0 ≤ x < 5 that satisfy the following linear congruences:

1. 3x ≡ 1 (mod 5).

2. 3x ≡ 2 (mod 5).

3. 2x ≡ 3 (mod 5).

4. 12x ≡ 4 (mod 5).

5. 2x− 4 ≡ 2 (mod 5).

Solution. The numbering is the same as in the questions before:

1. We can’t divide both sides by 4, because there is no law of division in modular arithmetic. However, we
can multiply by the modular inverse of 3 (mod 5), which is 2. Multiplying, we have 6x ≡ 2 (mod 5). Since
6 ≡ 1 (mod 5), we have 6x ≡ 1x ≡ x (mod 5). Thus, we have x ≡ 2 (mod 5).

2. In this part, we again multiply 3x ≡ 2 (mod 5) by 3−1, which is 2. Thus, we have 6x ≡ 4 (mod 5) =⇒
x ≡ 4 (mod 5).

3. The inverse of 2 (mod 5) is 3. Multiplying, we have 6x ≡ 9 (mod 5) =⇒ x ≡ 9 (mod 5) =⇒ x ≡ 4
(mod 5).
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4. The 12−1 (mod 5) is 3. Multiplying by 3, we have 36x ≡ 12 (mod 5) =⇒ x ≡ 12 (mod 5) =⇒ x ≡ 2
(mod 5).

5. We first add 4 to both sides and simplify:

2x− 4 + 4 ≡ 2 + 4 (mod 5)

2x ≡ 6 (mod 5)

2x ≡ 1 (mod 5).

Since 2−1 (mod 5) is 3, we have 6x ≡ 3 (mod 5) =⇒ x ≡ 3 (mod 5).

From these examples, we see that if the coefficient of the variable is relatively prime to the modulus, then we can
get rid of the coefficient by multiplying both sides of the congruence by the inverse of the coefficient.

Exercise 5.5. Find all possible values of x such that 23x ≡ 14 (mod 15).

Exercise 5.6. Find all possible values of x such that 23x+ 234 ≡ 12 (mod 15).

Exercise 5.7 (Introduction to Number Theory). Let y be a positive integer. Prove that if ay ≡ by
(mod my) for integers a and b, then a ≡ b (mod m).

Let’s try a few systems of linear congruences.

Example 5.8

Find all x such that

x ≡ 0 (mod 2)

x ≡ 0 (mod 5).

Solution. From the first congruence, we see that x is divisible by 2. From the second, we see that x is also

divisible by 5. Thus x is divisible by 10, or x ≡ 0 (mod 10) .

Let’s tackle a harder example.

Example 5.9

Find all possible values of x such that

x ≡ 1 (mod 3)

x ≡ 0 (mod 7)

Solution. From the second congruence, we see that x is divisible by 7. We list the first few nonnegative multiples
of 7.

7, 14, 21, 28, 35, 42, 49, 56, 63, 70, . . .

We now list all integers in that list that have a remainder of 1 when divided by 3. They are

7, 28, 49, 70, . . .
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All these terms differ by lcm[3, 7], or 21. Thus x ≡ 7 (mod 21).
However, we are guessing this is the solution. We write x ≡ 7 (mod 21) algebraically as

x = 21y + 7

where y is an integer. Since 21y + 7 ≡ 0 (mod 7) and 21y + 7 ≡ 1 (mod 3), we see that

x ≡ 7 (mod 21) .

Example 5.10

Find all x such that

x ≡ 3 (mod 4)

x ≡ 2 (mod 7).

Solution. This problem would be hard to solve using the method in the previous problem. We need a systematic
way to solve this.

The first congruence tell us that x ≡ 3 (mod 4). We write this algebraically as

x = 4a+ 3,

where a is an integer.
The second congruence tells us that x ≡ 2 (mod 7). We write this algebraically as

x = 7b+ 2,

where b is an integer.
Thus, we have to system of equations:

x = 4a+ 3 = 7b+ 2.

We rearrange the equation as 4a+ 1 = 7b, and mod 7 to get

4a+ 1 ≡ 0 (mod 7).

We subtract 1 from both sides of this congruence, and get

4a ≡ −1 (mod 7) =⇒ 4a ≡ 6 (mod 7).

We multiply the congruence by the inverse of 4 (mod 7), which is 2. Thus, we have

4a ≡ 6 (mod 7)

2× 4a ≡ 2× 6 (mod 7)

8a ≡ 12 (mod 7)

8a ≡ 5 (mod 7)

1a ≡ 5 (mod 7)

a ≡ 5 (mod 7).

We substitute a = 5 into the equation x = 4a+ 3 = 7b+ 2, and get x = 23. However this is not the only solution,
because we expect the solution to be a congruence.
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Since

23 ≡ 3 (mod 4)

23 ≡ 2 (mod 7)

we subtract 23 from both sides of the congruences:

x− 23 ≡ 3− 3 ≡ 0 (mod 4)

x− 23 ≡ 2− 2 ≡ 0 (mod 7).

From this, we see that x− 23 is divisible by both 4 and 7, which are relatively prime, so x− 23 ≡ 0 (mod 28).
Thus, all values of x that satisfy the congruence are

x ≡ 23 (mod 28) .

Let us now turn to a few harder systems.

Example 5.11

Find all x such that

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 0 (mod 5).

Solution. We know that the solution to a system of two linear congruences is another congruence. If we take
two congruences and solve them, we get a single congruence. We can then combine this congruence with the
third remaining congruence, thus solving the whole system.

We begin by finding all x such that

x ≡ 1 (mod 2)

x ≡ 2 (mod 3).

Turning these into an algebraic form, we have

x = 2a+ 1 = 3x+ 2.

We rearrange to get 3x = 2a− 1, and take the modulo 3, and get

2a− 1 ≡ 0 (mod 3).

We solve for a in this congruence by adding 1 to both sides and multiplying by the inverse of 2 (mod 3), which
is 2. Thus, we have

2a− 1 ≡ 0 (mod 3)

2a ≡ 1 (mod 3)

2× 2a ≡ 2× 1 (mod 3)

4a ≡ 2 (mod 3)

1a ≡ 2 (mod 3)

a ≡ 2 (mod 3).
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Substituting a = 2 into x = 2a+ 1 = 3x+ 2 we have x = 5. Thus,

5 ≡ 1 (mod 2)

5 ≡ 2 (mod 3).

Subtracting 5 from the congruences, we have

x− 5 ≡ 1− 1 ≡ 0 (mod 2)

x− 5 ≡ 2− 2 ≡ 0 (mod 3).

Thus, x− 5 is a multiple of both 2 and 3, and because gcd(2, 3) = 1, we have x− 5 ≡ 0 (mod 6) =⇒ x ≡ 5
(mod 6).

Now we have the following system of congruences:

x ≡ 5 (mod 6)

x ≡ 0 (mod 5).

We list the first few multiples of 5:

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, . . .

We see that 5, 35, 65 · · · are congruent to 5 (mod 6). These differ by 30, so we see that x ≡ 5 (mod 30). However,
we need to check our solution. Writing x ≡ 5 (mod 3)0 into an algebraic form (x = 30a+ 5), and taking the
mod 5 and mod 6, we have

30a+ 5 ≡ 0 (mod 5)

30a+ 5 ≡ 5 (mod 6).

Therefore, all x such that satisfy

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 0 (mod 5).

are
x ≡ 5 (mod 30).

§5.2 Chinese Remainder Theorem

Before we dive right into Chinese Remainder Theorem (abbreviated CRT), let us look at an example that does
not require CRT:

Example 5.12

Mr. Yu wants to divide the class into groups. When he tries to divide into groups of 3, 1 student is left over.
When he tries to divide into groups of 4, 1 student is left over. And when he tries to divide into groups of 5,
1 student is left over. What is the least number of students he could have, assuming he has more than 1
student?
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Solution. We simply write these equations in terms of mods. If the number of students he has is n, then

n ≡ 1 (mod 3),

n ≡ 1 (mod 4),

n ≡ 1 (mod 5).

To the first two equations, we realize that one works. One also works for the third equation, but because we
have to find the next greatest equation, we add 3 · 4 · 5 to get n = 61.

In general, we have

Theorem 5.13 (Special Case of Linear Congruences)

If n ≡ c (mod m1) ≡ c (mod m2) ≡ . . . ≡ c (mod mk) (all of these variables are integers), then

n ≡ c (mod m1m2m3 . . .mk) ≡ c (mod lcm(m1,m2,m3, . . . ,mk)).

This directly implies the following formula:

Corollary 5.14 (Special Case Corollary)

If
n ≡ c (mod m1m2m3 . . .mk),

and
d|m1m2m3 . . .mk

for some random integer d, then
n ≡ c (mod d).

Let us return to CRT now. We start with an example as usual.

Example 5.15

Find all integers x such that

x ≡ 1 (mod 10),

x ≡ 4 (mod 12).

Solution. We write the equations in an algebraic form, and get

x = 10a+ 1 = 12b+ 4.

We rearrange, and get
10a = 12b+ 3.

However, one side of this equation is even, and the other is odd. Thus, this system has no solutions for x.
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Combining earlier results, we see the following:{
x ≡ 0 (mod 2),
x ≡ 0 (mod 5)

⇒ x ≡ 0 (mod 10){
x ≡ 1 (mod 3),
x ≡ 0 (mod 7)

⇒ x ≡ 7 (mod 21){
x ≡ 3 (mod 4),
x ≡ 2 (mod 7)

⇒ x ≡ 23 (mod 28){
x ≡ 1 (mod 10),
x ≡ 4 (mod 12)

⇒ no solutions

We can see that the GCD of the first 3 systems moduli are relatively prime, and the fourth are not. This gives
the following result:

§5.3 Chinese Remainder Theorem

Theorem 5.16 (Chinese Remainder Theorem)

The Chinese Remainder Theorem states that where m and n are relatively prime integers, then the
system of congruences

x ≡ a (mod m),

x ≡ b (mod n)

always has a solution in integers x. Furthermore, the solution is of the form x ≡ c (mod mn).

Exercise 5.17. Find all x such that

x ≡ 3 (mod 4)

x ≡ 5 (mod 9).

Exercise 5.18. Find all x such that

x− 3 ≡ 4 (mod 2)

4x+ 2 ≡ 0 (mod 5).

Exercise 5.19. Find the smallest possible positive value of n such that

n ≡ 4 (mod 5)

n ≡ 3 (mod 6)

n ≡ 2 (mod 7).

§6 Worked Out Examples
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Example 6.1

A quick refresher:

(a) What are the remainders when 3333 + 4444 and 3333 · 4444 are divided by 5?

(b) What is the remainder when 72015 is divided by 48?

Solution. The numbering corresponds to the numbering above:

(a) We have 3333 ≡ 3 (mod 5) and 4444 ≡ 4 (mod 5), so 3333 + 4444 ≡ 3 + 4 ≡ 7 ≡ 2 (mod 5). Similarly,

3333 · 4444 ≡ 3 · 4 ≡ 12 ≡ 2 (mod 5). In general, we can take any integer and replace it with an integer
within the same residue class. We can do this multiple times within a problem.

(b) At first, it seems that even modular arithmetic can’t prevent this problem from becoming messy. However,
upon further inspection, we can see that 72 = 49, which leaves a remainder of 1 when divided by 48! Hence,
we can write

72015 ≡ 7 · (72)1007 ≡ 7 · 11007 ≡ 7 (mod 48).

Example 6.2

What are the last two digits of the integer 17198?

Solution. Note that 172 ≡ 289 ≡ −11 (mod 100). Thus, the problem is simplified to computing (−11)99 ≡ −1199

(mod 100). Now note that by the Binomial Theorem

1199 = (10 + 1)99 = 1099 + · · ·+
(

99

2

)
102 +

(
99

1

)
101 + 1.

When this expansion is reduced modulo 100, all but the last two terms will go away since they are all divisible
by 100, so 1199 ≡

(
99
1

)
· 10 + 1 ≡ 91 (mod 100). As a result, 17198 ≡ −91 ≡ 09 (mod 100).

Remark 6.3. There are some instances where modular division works. Don’t count on it all the time, however.

Example 6.4

A few proofs:

(a) Prove that any integer is divisible by 2n iff the integer formed by its last n digits is also divisible by 2n.

(b) Let N = a0a1a2 . . . an be an integer. (The bar above the previous expression suggests the variables
are digits and that we are not multiplying them together.) Prove that N is divisible by 9 iff

a0 + a1 + a2 + · · ·+ an

is also divisible by 9.

Solution. (a) Let Y be the integer formed by the last n digits and let X be the integer formed by the digits to
the left of these n digits. For example, in the 124564 case above, X = 1245 and Y = 64. Note that the
integer can thus be written as 10nX + Y . Now note that 10n ≡ (2n)(5n) ≡ 0 (mod 2n), so 10nX + Y ≡ Y
(mod 2n). This immediately implies the conclusion.
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(b) Note that N can be written more mathematically as

N = a0 · 10n + a1 · 10n−1 + a2 · 10n−2 + · · ·+ an−1 · 10 + an.

We attempt to simplify this modulo 9. The key here is to note that 10 ≡ 1 (mod 9). This further implies
that 102 ≡ 1 (mod 9), 103 ≡ 1 (mod 9), and so on. Making all the necessary substitutions gives

N ≡ a0 + a1 + a2 + · · ·+ an (mod 9).

Thus N and the sum of the digits of N give the same remainder upon division by 9, implying the conclusion.

Example 6.5

I am thinking of a number. All I can give to you is that if you triple my number, it leaves a remainder
of 13 when divided by 17. Unfortunately, this is clearly not enough information to figure out my number.
However, it is enough information to figure out what the remainder of my original number is when divided
by 17. What is this remainder?

Solution. A one-line solution: 17+13
3 = 10.

Example 6.6

Find the remainder when 515 is divided by 128.

Solution. Apply the rules from before:

(53)5 ≡ (−3)5 ≡ −243 ≡ 13 (mod 128).

Example 6.7

Find the remainder when 129 is divided by 1000.

Solution. Apply the rules from before:

129 ≡ (1728)3 ≡ (−272)3 ≡ 984 · (−272) ≡ (−16) · (−272) ≡ 352 (mod 1000).

Example 6.8

Calculate gcd(67620, 66234).

Solution. This looks atrocious, but it’s not really. First, we can write

67620 = 66234 ∗ 1 + 1386.

Therefore, by the Euclidean Algorithm, we have that gcd(67620, 66234) = gcd(66234, 1386).
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Wash, rinse, repeat.
66234 = 1386 ∗ 47 + 1092.

1386 = 1092 ∗ 1 + 294.

1092 = 294 ∗ 3 + 210.

294 = 210 ∗ 1 + 84.

210 = 84 ∗ 2 + 42.

84 = 42 ∗ 2 + 0.

Example 6.9 (Paraguay 2012)

Define a list of numbers with the following properties:

• The first number of the list is a one-digit natural number.

• Each number (since the second) is obtained by adding 9 to the number before in the list.

• The number 2012 is in that list.

Find the first number of the list.

Solution. Notice that they all are of the same residue modulo 9. Thus,

2012 ≡ 5 (mod 9).

Example 6.10 (AMC 8 2014)

The 7-digit numbers 74A52B1 and 326AB4C are each multiples of 3. What is the sum of all possible values
of C?

Solution. Observe that

7 + 4 +A+ 5 + 2 +B + 1 ≡ A+B + 19 ≡ A+B + 1 (mod 3),

so A+B ≡ 2 (mod 3). From the second number, we have

3 + 2 + 6 +A+B + 4 + C ≡ A+B + C ≡ 0 (mod 3),

so we must have C ≡ 1 (mod 3). Thus, C = 1, 4, 7, so our answer is 1 + 4 + 7 = 12 .

Example 6.11 (Mock AMC 10)

The integers a, b, c, and d are four distinct prime numbers. If d = a2b2 − 49c2, then what is the minimum
possible value of a+ b+ c?

Solution. Factor to get d = (ab− 7c)(ab+ 7c). Observe that d is prime, so we must have ab− 7c = 1. By trial
and error, we find that (a, b, c, d) = (3, 5, 2, 29) works, so our answer is 3 + 5 + 2 = 10 .
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Example 6.12 (iTest 2007)

Find the remainder when 1 + 2 + · · ·+ 2007 is divided by 1000.

Solution. A simple addition in modular arithmetic:

2007 · 2008

2
≡ 2007 · 1004 ≡ 7 · 4 ≡ 28 (mod 1000).

Example 6.13 (Purple Comet HS 2013)

There is a pile of eggs. Joan counted the eggs, but her count was off by 1 in the 1’s place. Tom counted in
the eggs, but his count was off by 1 in the 10’s place. Raoul counted the eggs, but his count was off by 1 in
the 100’s place. Sasha, Jose, Peter, and Morris all counted the eggs and got the correct count. When these
seven people added their counts together, the sum was 3162. How many eggs were in the pile?

Solution. We must have
3162 + 100a+ 10b+ c ≡ 0 (mod 7),

where a, b, and c are each ±1. Simplifying mod 7, we have 5 + 2a + 3b + c ≡ 0 (mod 7). Observe that
(a, b, c) = (−1, 1, 1) works, so our answer is

3162− 100 + 10 + 1

7
= 439.

Example 6.14 (Mandelbrot 2008-09)

Determine the smallest positive integer m such that m2 + 7m+ 89 is a multiple of 77.

Solution. We split it up mod 7 and mod 11.
Mod 7:

m2 + 7m+ 89 ≡ m2 + 5 ≡ 0 (mod 7),

so m ≡ 3, 4 (mod 7).
Mod 11:

m2 + 7m+ 89 ≡ m2 − 4mm+ 1 ≡ (m− 2)2 − 3 ≡ 0 (mod 11),

so m ≡ 7, 8 (mod 11).
Now, we just combine these two equivalences in all four possible ways to find our minimum solution. It turns

out that m = 18 is the minimum.

Remark 6.15. A common strategy is to split up the primes of the modulo, i.e.

pe11 , p
e2
2 , p

e3
3 , . . . ,

where
N =

∏
p∈P

pei = 2e1 · 3e2 · 5e3 · . . . .
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Example 6.16

Prove that every year, including any leap year, has at least one Friday 13-th.

Solution. It is enough to prove that each year has a Sunday the 1st. Now, the first day of a month in each year
falls in one of the following days:

Month Day of the Year mod 7

January 1 1

February 32 4

March 60 or 61 4 or 5

April 91 or 92 0 or 1

May 121 or122 2 or 3

June 152 or 153 5 or 6

July 182 or183 0 or 1

August 213 or 214 3 or 4

September 244 or 245 6 or 0

October 274 or 275 1 or 2

November 305 or 306 4 or 5

December 335 or 336 6 or 0

(The above table means that, depending on whether the year is a leap year or not, that March 1st is the 50th or
51st day of the year, etc.) Now, each remainder class modulo 7 is represented in the third column, thus each
year, whether leap or not, has at least one Sunday the 1st.

§7 Problems

Problem 7.1 (AIME I 2010). Find the remainder when 9× 99× 999× · · · × 99 · · · 9︸ ︷︷ ︸
999 9’s

is divided by 1000.

Problem 7.2 (AMC 10 B 2010). Positive integers a, b, and c are randomly and independently selected with
replacement from the set {1, 2, 3, . . . , 2010}. What is the probability that abc+ ab+ a is divisible by 3?

Problem 7.3 (AMC 12 A 2010). The number obtained from the last two nonzero digits of 90! is equal to n.
What is n?

Problem 7.4 (AHSME 1995). Consider the triangular array of numbers with 0,1,2,3,... along the sides and
interior numbers obtained by adding the two adjacent numbers in the previous row. Rows 1 through 6 are
shown.

0
1 1

2 2 2
3 4 4 3

4 7 8 7 4
5 11 15 15 11 5

Let f(n) denote the sum of the numbers in row n. What is the remainder when f(100) is divided by 100?

Problem 7.5 (AMC 8 1999). What is the remainder when 19992000 is divided by 5?

Problem 7.6 (AMC 10 B 2009). What is the remainder when 30 + 31 + 32 + . . .+ 32009 is divided by 8?

Problem 7.7. Prove the following results:

29



freeman66 (May 13, 2020) Modular Arithmetic in the AMC and AIME

• If b is even and b|a, then a is even.

• If a, b ∈ Z and a ≥ 2, then a does not divide one of b or b+ 1.

• If ab is even, then one of a or b is even.

• If a|b and b|c, then a|c.

Problem 7.8 (USAJMO 2013). Are there integers a and b such that a5b+ 3 and ab5 + 3 are both perfect cubes
of integers?

§A Appendix A: List of Theorems, Corollaries, and Definitions

List of Theorems and Corollaries

1.5 Theorem - Division Theorem 4

1.8 Theorem - Existence of GCD 5

1.9 Theorem - Properties of GCD 6

1.11 Theorem - Product of LCM and GCM 6

1.13 Theorem - Coprime Conditions 7

2.3 Theorem - Congruence Condition 8

2.7 Theorem - Euler’s Totient Function 9

2.8 Theorem - Fermat’s Little Theorem 9

2.11 Theorem - Euler’s Totient Theorem 10

4.1 Theorem - Modular Addition and Subtraction 12

4.4 Theorem - Modular Multiplication 13

4.8 Theorem - Modular Exponentiation 14

4.13 Theorem - Existence of Modular Inverse 15

4.17 Theorem - Euclidean Algorithm 16

5.2 Theorem - Form of Linear Congruence 17

5.13 Theorem - Special Case of Linear Congruences 23

5.14 Corollary - Special Case Corollary 23

5.16 Theorem - Chinese Remainder Theorem 24
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List of Definitions

1.1 Definition - Prime & Composite 4

1.2 Definition - Multiples & Factors 4

1.3 Definition - Prime Factorization 4

1.4 Definition - Divisibility 4

1.6 Definition - Quotient & Remainder 5

1.7 Definition - Greatest Common Divisor 5

1.10 Definition - Least Common Multiple 6

1.12 Definition - Coprime 6

2.2 Definition - Congruence 8

2.5 Definition - Euler’s Totient Function 8

3.2 Definition - Residue Class 11

4.11 Definition - Modular Inverse 14

5.1 Definition - Linear Congruence Equation 17
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