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“If only I had the theorems! Then I should find the proofs easily enough.” - Georg Bernhard Riemann.
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§1 Proof by Contradiction

We’ll start with an example:

Conjecture 1.1 (Hippasus)
√

2 is irrational.

Of course, we know that
√

2 ≈ 1.4142.... That doesn’t seem to have much of a pattern, so it must be irrational.
But can we find a mathematical proof for this to be completely sure? In order to proceed to the proof, we must
introduce the following definitions which you have most likely already learned:

Definition 1.2 (Rational Number) — A rational number is a number which can be written as x
y , where

x and y are integers. Real numbers that are not rational are called irrational.

Definition 1.3 (Greatest Common Divisor) — The greatest common divisor of two numbers x and y is
written as gcd(x, y) and is defined as the largest number that divides both x and y.

Definition 1.4 (Lowest Terms) — A rational number x
y is said to be in lowest terms if gcd(x, y) = 1 (x

and y do not have any common factors greater than 1).

Remark 1.5. If a rational number is not in lowest terms, both x and y can be divided by gcd(x, y) and the rational
number will be in lowest terms because gcd(x, y) will become 1.

Proof. Assume that
√

2 is a rational number in the form a
b when written in lowest terms. Then

√
2 =

a

b

Squaring both sides, we get

2 =
a2

b2

Rearranging this, we get
a2 = 2b2

If a is odd, then a2 (the left side) becomes odd. However, the right side is even, so a must be even. If we check,
squaring an even number a indeed does yield another even number, so a is actually even. We can write an even
number x as x = 2y for some integer y. Then, we can also write a as a = 2c for some c. Then our equation from
before, a2 = 2b2 becomes

(2c)2 = 2b2

Expanding the left side, we get
4c2 = 2b2

and dividing by 2, the equation becomes
2c2 = b2

By the same logic as before, b must be even. If both a and b are even, they are both divisible by 2. Then, this
contradicts our assumption that a

b is in lowest form. Therefore, our original assumption that
√

2 is rational

must be false. If
√

2 is not rational, it must be irrational. Therefore,
√

2 is irrational.

4
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Theorem 1.6 (Proof by Contradiction)

To show that a statement is true, we sometimes start by assuming that the given statement is false. Then,
we show that this cannot be the case because we arrive at an impossible solution. Therefore, the original
statement that we assumed to be false must have been true. This is Proof by Contradiction.

Exercise 1.7. If you have time at home, try to show that
√

3 is irrational. What about
√

5?
√

6? Can you
generalize to

√
n, with n not a perfect square (1, 4, 9, . . .).

Exercise 1.8. Show that for any positive integers a, b, c with ab = c2, then a ≤
√
c or b ≤

√
c.

§2 Proof by Induction

The basic idea behind induction is hidden in the following gem: prove the statement for some n = a. Then,
prove that if the statement holds for n = k, then it must hold for n = k + 1. Therefore, since the statement
holds for n = a, it must hold for n = a + 1,a + 2,a + 3, and so on. This is why induction is typically used when
we wish to prove a statement for all integers.

Theorem 2.1 (Principle of Induction)

To show a statement is true for all positive integers, we can do it through induction by the following
steps:

• Show it is true for some starting values (known as the base case), most likely n = 0 or n = 1.

• Then, we show that if it is true for n = k, the statement is true for n = k + 1.

So why does this work? We can imagine a sequence of dominoes:

Figure 1: A row of dominoes, falling and knocking the next one over, the process repeating infinitely.

We can use this figure to explain induction. Imagine the first domino is our base case n = 0 (a similar
argument can be repeated for other starting values such as n = 1). We show that it is true, so we knock that

5
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domino over. Then, this knocks the next domino over (n = 1), which knocks the next domino over (n = 2), and
the process continues infinitely. Let’s see an example:

Conjecture 2.2 (Faulhaber)

Show that the sum
1 + 2 + · · ·+ n

has value equal to
n(n + 1)

2
,

where n is any positive integer.

Remark 2.3. In induction, we are often given formulas and asked to prove them. How we got those formulas is
another story called derivation.

Proof. We are given the formula n(n+1)
2 and are trying to prove this for all positive integers starting with 1, then

2, 3, 4, and so on. We shall use our induction (or domino principle, whichever you fancy) to show this. We first
need to show the statement is true for our base case.

Base Case

We start by proving the base case of n = 1 because 1 is the smallest positive integer. This is a fairly simple
sum because the sum of the first integer is simply 1. We can verify that the given formula holds by plugging
1 for n. We get

1(1 + 1)

2
=

1 · 2
2

=
2

2
= 1.

Now we know that the given formula works for n = 1.

Now we can perform our two induction steps.

Inductive Hypothesis

Assume that the formula n(n+1)
2 calculates the sum of the first k positive integers when n = k.

Now, we finish off with the last part, which is the inductive step.

Inductive Step

Assume that the given formula holds for n = k for some k. Then we must prove that it also holds for
n = k + 1. Let us now try to calculate

1 + 2 + 3 + · · ·+ k + (k + 1)

Because of the Inductive Hypothesis, we know that we can use our formula to calculate the value of

1 + 2 + 3 + · · ·+ k

by computing k(k+1)
2 . We can replace the 1 + 2 + 3 + · · ·+ k part of our sum with this. Then,

1 + 2 + 3 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

6
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Factoring out k + 1 from the right side, we get (k + 1)
(
k
2 + 1

)
. Writing the term k

2 + 1 as a single fraction
with 2 as the denominator, this term becomes

k

2
+ 1 =

k

2
+

2

2
=

k + 2

2

Substituting this last expression for k
2 + 1 in (k + 1)

(
k
2 + 1

)
, we have (k + 1) · (k+2)

2 or (k+1)(k+2)
2 . This

cannot be simplified further, so we confirm that when k + 1 is substituted into our formula, the same result
is yielded. Indeed, substituting n with k + 1 in our formula, we get

(k + 1)(k + 1 + 1)

2
=

(k + 1)(k + 2)

2
.

These two are the same! Therefore, we can conclude that if our formula works for n = k, then it must work
for n = k + 1. Remember that we established that this formula works for n = 1 in our base case. Now that
we know that it works for n = 1, we can use our recently proven conclusion to find that the formula works
for n = 1 + 1 = 2, so n = 1 implies n = 2. Similarly, our formula works for n = 3, 4, 5, . . ., and therefore, we
have proven this formula for all positive integers n.

Exercise 2.4. Try to show that the sum of the first n odd integers is n2 by the Principle of Induction.

Exercise 2.5. Try to show that the sum

12 + 22 + 32 + · · ·+ n2

is equal to
n(n + 1)(2n + 1)

6

by the Principle of Induction.

§3 Pigeonhole Principle

This next theorem is not a proofs strategy, but merely a concept. This concept is so trivial that no one thought
it to be significant for a long time. In this concept, we assume that we have pigeons that live in holes. We put
these pigeons into their holes by choosing one hole for each pigeon. This is the same as putting toy balls into
different buckets, where the pigeons are the balls and the holes are the buckets.

Conjecture 3.1 (Pigeonhole Principle)

If we have n + 1 pigeons and only n holes to place them in, we must have at least 2 pigeons in one of the
holes.

Proof. The proof for this observation is simple. We can use the method of Proof by Contradiction. We assume
that we can place the pigeons into their holes such that there is no more than one pigeon per hole. Suppose
we are now placing our pigeons into their holes. If we place more than one pigeon per hole, we have at least 2
pigeons per hole. Therefore, we must place one pigeon per hole. By the time we have place a single pigeon in
each of the n holes, we have one pigeon remaining. No matter where we place this pigeon, it will end up in a hole
with two pigeons in it. Therefore, it is unavoidable to have at least two pigeons in one of the pigeonholes.

7
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This conjecture is so trivial, you probably did not need to read the proof in order to assure yourself that it was
true. The next conjecture that we prove is a generalization of this previous one.

Conjecture 3.2 (Generalized Pigeonhole Principle)

If we have n · k + 1 pigeons and must place them into n different holes, we must have at least k + 1 pigeons
in one of the n holes.

Proof. We do this proof by the method of Proof by Contradiction as well. Suppose that all of the holes have
less than k + 1 pigeons. We can therefore place up to k pigeons per hole. Armed with a strategy, we start to
confidently place k pigeons in each hole. However, when we reach the last hole and place the k pigeons, we
realize that we have only used

n holes× k pigeons per hole = n · k pigeons,

and that we still have one pigeon left to place in one of the holes (because we started with n · k + 1 pigeons).
Similar to the last proof, no matter where we place our last pigeon, it will end up in a hole which has k + 1
pigeons in it (because we had originally put k pigeons in every hole). Therefore, it is unavoidable to have k + 1
pigeons in one of the n holes.

Figure 2: This diagram shows this principle visually if we have 4 · 4 + 1 = 17 balls. By placing 4 balls in each of
the 4 buckets, we use 4 buckets× 4 balls per bucket = 16 balls. However, we have one ball remaining.
This ball must be kept in a bucket which will end up having 4 + 1 = 5 balls.

Remark 3.3. In the image above, we used the analogy of balls and buckets. Note that this is exactly the same as
using pigeons and pigeonholes, respectively. There are many analogies for the pigeonhole principle, but you will start
to recognize them with enough practice.

This generalization is fairly harder to grasp, but it still comes intuitively to the mind. While this generalization
has applications of its own (such as in basic competition math problems), it can also be used to prove more
advanced theorems. Let us simply establish our results for now:

Theorem 3.4 (Pigeonhole Principle)

If we have at least n · k + 1 pigeons and must place them into n different holes, we must have at least k + 1
pigeons in one of the n holes.

Exercise 3.5 (Art of Problem Solving). Use the Pigeonhole Principle to attempt the following problem: If
a Martian has an infinite number of red, blue, yellow, and black socks in a drawer, how many socks must
the Martian pull out of the drawer to guarantee he has a pair?

8
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§4 Examples

§4.1 Prime Numbers

Note 4.1 — When we say, “Statement A is true if and only if statement B is true,” we mean, “Statement
A is true if statement B is true and statement A can only be true if statement B is true.” Think about this
for a minute. For example, statement A can be

“A number is even,”

and statement B can be
“The number is divisible by 2.”

Putting these two statements together with an “if and only if”, we get

“A number is even if and only if the number is divisible by 2.

This means that “A number is even if it is divisible by 2,” which is obviously true because this is the
definition of an even number: it is divisible by 2. However, this also means that “A number is even only
if it is divisible by 2.” This latter statement means that if a number is not divisible by 2, then it must
not be even as well. “If and only if” is a very common phrase found in math texts and is often written in
shorthand by writing “iff.” So, if you see this written somewhere, do not think of it as a typo!

In our next section, we discuss (arguably) some of the most important numbers: prime numbers. We start off
with a definition:

Definition 4.2 (Prime) — A positive integer n ≥ 2 is prime if and only if it is divisible by 1 and n and
none of

2, 3, 4, . . . , n− 1.

A positive integer that is not prime is referred to as composite.

Remark 4.3. Note that any positive integer n that is composite can be written as n = a · b, where a and b are both
greater than 1.

Remark 4.4. The number 1 is neither prime nor composite. It is special because it is the product of no primes at
all! In other words, if we do not multiply any prime numbers together (or any numbers for that matter), we will end
up with the number 1.

Why are prime numbers so important? As we will now see, prime numbers are the building blocks of all
numbers.

Conjecture 4.5 (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 has a unique way in which it can be written as the product of multiple
prime numbers. Specifically, a number n can be written as the product

n = pk11 · p
k2
2 · · · p

km
m

where p1, p2, . . . , pm are primes and k1, k2, . . . , km are positive integers (also known as whole numbers).

Proof. In order to prove this conjecture, we must prove two things:

9
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• Every number has a prime factorization;

• Every number has a unique prime factorization.

Notice how these two parts are in the original conjecture, but we isolated them explicitly. This is a powerful
problem solving tool. We perform the following proof for the first part of the conjecture by strong induction,
which will be introduced here. Strong induction works similar to normal induction and is founded on the
following key ideas:

• Prove a conjecture for some number n = a. This is our Base Case.

• Prove that if the conjecture is true for

n = a, a + 1, a + 2 · · · , k − 1,

where a < k (assuming that this is true is known as the Inductive Hypothesis), then it must be true
for k.

• This last part is the Inductive Step. If the conjecture, as proved in the base case, holds for n = a, then
it must hold for n = a+ 1, a+ 2, a+ 3, . . ., therefore proving the conjecture for n = k for all integers k ≥ a.

Now, let’s get back to proving the Fundamental Theorem of Arithmetic. We do so with strong induction:

Base Case

Since 1 is neither prime nor composite, we start with our base case of n = 2. Since 2 is prime, we can
simply write its prime factorization as 2, and we are done with our base case.

Now we proceed to making the:

Induction Hypothesis

We must assume that all the numbers
2, 3, 4, . . . , k − 1

have a prime factorization. Now, we try to find whether k has a prime factorization.

This last part is done in the

Induction Step

k is either prime or composite. If k is prime, then its prime factorization is simply k. However, if k is
composite, then we can write k as k = x · y, where x and y are positive integers greater than 1 and are
either prime or composite (see remark above). Clearly, x and y must be less than k. By our inductive
hypothesis, both x and y must both have prime factorizations. Suppose

x = pj11 · p
j2
2 · p

j3
3 · · · p

jm
m

and
y = qi11 · q

i2
2 · q

i3
3 · · · q

il
l .

Multiplying these two, we get

k = x · y = pj11 · p
j2
2 · p

j3
3 · · · p

jm
m · q

i1
1 · q

i2
2 · q

i3
3 · · · q

il
l .

The simplified version of this is the prime factorization of k.

10
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Therefore, all numbers k ≥ 2 have a prime factorization.

Now, we must prove that every number k has a unique prime factorization. We can do this using Proof by
Contradiction. Suppose that a number n has two prime factorizations so that

n = p1 · p2 · p3 · · · pk

and
n = q1 · q2 · q3 · · · ql

where pi and qj are distinct primes for all i and j. We need the following

Lemma 4.6 (Euclid)

Every prime number p | ab (this means p divides the product of a and b) satisfies p | a or p | b.

We suppose that in the representations of n, we suppose that one of the pi’s is not any of the qj ’s. Then, we
have that

pi | n = qi11 · q
i2
2 · q

i3
3 · · · q

il
l ,

so pi divides one of the qj , a contradiction. Thus, the two primes are the same. We are only concerned about the
exponents now. Let pm = qn for some m and n and that these are raised to the powers jm and im, respectively.
Assume that for contradiction, im < jm (if not, then we can reverse the roles of the two). Then, considering the
number

n

qinn
,

we see that two prime factorizations are

pj11 · · · p
jm−1

m−1 p
jm−in
m p

jm+1

m+1 · · · p
jk
k = qi11 · · · q

in−1

n−1 q
in+1

n+1 · · · q
il
l .

Notice how there is no qinn on the right hand side because we divided by it. This leads to a contradiction as pm
appears on the left hand side and not on the right hand side (because no other qx is divisible by pm). Thus, our
original assumption that n has 2 prime factorizations was false, so we know that every positive number greater
than one must have a unique prime factorization.

Let us establish our new proof technique:

Theorem 4.7 (Strong Induction)

Strong induction is a proofs strategy that works similar to induction. There are 3 parts to a strong
induction proof:

• Prove a conjecture for some number n = a. This is our Base Case.

• Assume that the conjecture holds for

n = a, a + 1, a + 2 · · · , k − 1,

where a < k. This is called the Inductive Hypothesis.

• Prove that this conjecture must also hold for k. This last part is the Inductive Step.

If the conjecture, as proved in the base case, holds for n = a, then it must hold for n = a+ 1, a+ 2, a+ 3, . . .,
therefore proving the conjecture for n = k for all integers k ≥ a.

11
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Because of Fundamental Theorem of Arithmetic, we can define the following:

Definition 4.8 (Prime Factorization) — Every positive integer n greater that 1 can be expressed in the form

n = pk11 · p
k2
2 · · · p

km
m

and this is called the prime factorization of n.

Try your hands at the following exercises:

Exercise 4.9. Write the prime factorization of the following numbers: 24, 35, 360. What about 5,040? See
the definition of a prime factorization for the writing structure (above).

Exercise 4.10. Find the prime factorization of 10. What about 100? 1,000? Try 1,000,000. What about
10n for some integer n?

Conjecture 4.11 (Infinitude of Primes)

There are an infinite number of primes.

Proof. We can perform this simple proof using Proof by Contradiction. Assume that there is only a finite
number of primes p1, p2, p3, · · · , pn. Now, if we multiply all of these primes together and add one, we get

p1 · p2 · p3 · · · pn + 1.

Let us now find the prime factorization of this number. Uh-oh, we find that our number is not divisible by
p1, p2, p3, · · · , pn. If our new number is prime, then we have found another prime that is not on our finite list of
all the primes and therefore we have reached a contradiction. On the other hand, if our number is composite,
then it must be divisible by some prime number because it must have a prime factorization. However, it is
not divisible by any of the prime numbers in this finite list (it leaves a remainder of when when divided by
each of p1, p2, p3, · · · , pn. In either scenario (whether our number is prime or composite), we have reached a
contradiction. Therefore, our original assumption that there is a finite number of primes must have been false.
Because of our contradiction, we know that there must be an infinite number of prime numbers.

From this proof, we conclude that

Theorem 4.12 (Infinitude of Primes)

There are an infinite number of prime numbers.

§4.2 Euclidean Algorithm

Finding the gcd of two numbers a and b can be done by comparing the prime factorizations of the two numbers.
From the prime factorizations, we can easily see the maximum power of a prime p such that both a and b are
divisible by this power of p. Say this power of p is k. Then, pk divides both a and b. If we find pk for all such
primes and multiply them, we get the gcd(a, b). However, there is an even better way to find the gcd(a, b). We
start by proving a lemma.

12
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Conjecture 4.13 (Discovering the Euclidean Algorithm)

If a and b are nonzero integers and k is an integer, then gcd(a, b) = gcd(a, b− k · a).

Proof. It suffices to show that the gcd(a, b) divides b − k · a. If d = gcd(a, b), then a = d · x and b = d · y for
some x and y. Note that because d = gcd(a, b), x and y must be relatively prime, meaning that gcd(x, y) = 1.
Thus,

b− k · a = (d · y)− k · (d · x) = d(y − k · x).

Therefore, b− k · a is also a multiple of d. Therefore, we must have gcd(a, b) = gcd(a, b− k · a).

How does this help us find the gcd(a, b) for two integers a and b? Well, this helps us to simplify the problem, as
shown in the following example:

Example 4.14 (Euclidean Algorithm Example)

Find the gcd(144, 270).

Proof. Finding the prime factorization for these two numbers looks like a bit of a pain. However, if we let
a = 144 and b = 270, we know that

gcd(a, b) = gcd(a, b− k · a) = gcd(144, 270− 144) = gcd(144, 126) = gcd(126, 144).

We have reduced the complexity of this problem. Again, we can take a = 126 and b = 144. Notice how we
always let b, the second number, be the larger of the two numbers (the order of a and b in gcd(a, b) does not
matter). We have

gcd(126, 144) = gcd(126, 144− 126) = gcd(126, 18) = gcd(18, 126).

Wow, this seems to be working really well! Let’s try that again!

gcd(18, 126) = gcd(18, 126− 7 · 18) = gcd(18, 0).

At this point, it is clear that gcd(18, 0) = 18. Therefore, gcd(144, 270) = 18 as well.

This last example showed us how to use our recently discovered gcd trick to evaluate gcd(a, b) for some integers
a and b. We will define this process, called the Euclidean Algorithm generally as follows:

Theorem 4.15 (Euclidean Algorithm)

If we are trying to find gcd(a, b), rearrange these two numbers so that the second number b is the larger of
our two numbers. Now, perform the following four steps:

• If a = 0 or b = 0, then the final answer is the nonzero number. In this case, we are done.

• If a 6= 0 and b 6= 0, then consider the number b− k · a, where 0 ≤ b− k · a ≤ a and k is an integer.
This number is somewhere between 0 and a, which means that we have reduced the complexity of the
problem. Replace the current value of b with this number and proceed.

• Switch the order of a and b so that the second number in gcd(b, a), or a, is greater than the first
number, or b.

• Switch the names of a and b to make sure that b is always the second number in the pair. Namely, so
that we have gcd(a, b).
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Joke 1 (Question)

Try to unscramble the word “Algorithm” into another math word! (Proceed to find the answer.)

Think over this last theorem, or the Euclidean Algorithm, and see how it applies to the example shown above.
Now, we explore an extension of this algorithm.

Conjecture 4.16 (Bézout’s Lemma)

The gcd(a, b), where a and b are positive integers, is the smallest positive integer that can be expressed as
a · x + b · y, where x and y are integers.

Proof. Since both a and b are multiples of d = gcd(a, b), every number in this form will also be a multiple of d.
If you do not believe me, try it for yourself! Therefore, the smallest positive number that could be in this form
is d. Therefore, we only have to show that d itself can be written in this form, and we will be done. We can do
this using the Euclidean Algorithm. If we can show that every number produced by the Euclidean Algorithm
can be written in this form, then the gcd(a, b), which is also one of these numbers, can be written in this form
and we are done. We can do this by the Principle of Induction.

Base Case.

This will be the first and second numbers “produced” by the Euclidean Algorithm, or a and b themselves.
Of course, these can be expressed in the form a · x + b · y by allowing y = 0 and x = 0, respectively (Think
about it!).

Now, we shall proceed with the

Inductive Hypothesis

Let us name each number produced by the Euclidean Algorithm as bn for some integer n in the sequence
that the number was produced. So, b = b0, a = b1, and b− k · a = b2, and so on. Because of our Base Case,
we can assume that bn−1 and bn can be written in this form. Let bn−1 = axn−1 + byn−1 and bn = axn + byn.
Now we must prove that bn+1 can be written in this form as well.

Finally, the backbone of the proof is in the

Inductive Step.

So, how do we get the next term bn+1? Well, by the Euclidean Algorithm, bn+1 = bn−1 − k · bn. By our
definitions of bn−1 and bn, we have

bn+1 = bn−1 − k · bn = (axn−1 + byn−1)− k · (axn + byn).

Rearranging this, we have
a(xn−1 − kxn) + b(yn−1 − kyn).

If we take x = xn−1 − kxn and y = yn−1 − kyn, we have written bn+1 in the form a · x + b · y.

As mentioned before, this means that we are done with our proof.
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§A Appendix A: List of Theorems, Lemmas, and Conjectures

List of Theorems, Lemmas, and Conjectures

1.1 Conjecture - Hippasus 4

1.6 Theorem - Proof by Contradiction 5

2.1 Theorem - Principle of Induction 5

2.2 Conjecture - Faulhaber 6

3.1 Conjecture - Pigeonhole Principle 7

3.2 Conjecture - Generalized Pigeonhole Principle 8

3.4 Theorem - Pigeonhole Principle 8

4.5 Conjecture - Fundamental Theorem of Arithmetic 9

4.6 Lemma - Euclid 11

4.7 Theorem - Strong Induction 11

4.11 Conjecture - Infinitude of Primes 12

4.12 Theorem - Infinitude of Primes 12

4.13 Conjecture - Discovering the Euclidean Algorithm 13

4.15 Theorem - Euclidean Algorithm 13

4.16 Conjecture - Bézout’s Lemma 14

List of Theorems, Lemmas, and Conjectures

1.2 Definition - Rational Number 4

1.3 Definition - Greatest Common Divisor 4

1.4 Definition - Lowest Terms 4

4.2 Definition - Prime 9

4.8 Definition - Prime Factorization 12
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§B Appendix B: Other Proof Techniques

§B.1 Proof by Contraposition

Proof by contraposition infers the statement ”if p then q” by establishing the logically equivalent contrapositive
statement: ”if not q then not p”.

Example B.1

Prove that if x2 is even, then x is even.

Solution. Suppose that x is odd. Then x · x = x2 is odd. Thus, x2 can only be even if x is even.

§B.2 Proof by Construction

For existence problems, one can construct the solutions. It can also be a counterexample, in which you
disprove the claim. Some say there are also nonconstructive proofs, in which you don’t need to actually prove
it, but rather give an example. I’d say this is still constructive, as shown below:

Example B.2

Prove there exists an even prime number.

Solution. I claim 2 is this number. The only factors of 2 are 1 and 2, which directly implies it is a prime
number.

§B.3 Proof by Exhaustion

This is more commonly known as casework. Given a finite amount of cases, they can all be checked to give a
certain result. Of course, you could have an infinite number of cases, but if there exists a way to prove none of
them work, you have still exhausted that case. This is a proof commonly used by computer scientists.

§B.4 Combinatorial Argument

A combinatorial proof establishes the equivalence of different expressions by showing that they count the same
object in different ways. Often a bijection between two sets is used to show that the expressions for their two
sizes are equal. Alternatively, a double counting argument provides two different expressions for the size of a
single set, again showing that the two expressions are equal.

§B.5 Proof Without Words

This was presented on the title page. The idea is that the visual proves the claim in some clever way - I
recommend you search these up, and see for yourself how they work!

§B.6 Probabilistic Method

This method is too advanced for even the appendix. You can read about it here.

§B.7 Fake Proofs

Sometimes it is fun to ”spot the mistake” in the proof. Most of the time, fake proofs arise from fakesolving -
thinking you solved the problem when you really didn’t. I encourage you to not only Google search for fake
proofs, but also false proof techniques! One of my favorites is Proof by Intimidation.
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