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§1 Introduction

Sequences and series are one of the most prevalent topics in the AMC and AIME.

§2 Basics of Sequences and Series

§2.1 Definitions

Let’s start by introducing a few ideas.

Definition 2.1 (Sequence) — A sequence is an ordered list of numbers.

Definition 2.2 (Partial Sum) — A partial sum is the sum of a portion of the sequence. Partial sums are
sometimes called finite series.

Definition 2.3 (Series) — A series is the sum of the elements in a given sequence.

§2.2 Summation Notation

To keep things simple we introduce summation notation.

Definition 2.4 (Summation Notation) — In a summation, there is an index going from a starting point to
an ending point. The given element is tested through all values from the start to the end (inclusive), and
then all values of the element are summed. Summation notation is also sometimes called sigma notation.
An example would be

b∑
a=1

f(a) = f(1) + f(2) + · · ·+ f(b− 1) + f(b).

Example 2.5

Write 1 + 2 + . . . + n in summation notation.

Solution. Denote x as the index of the summation. Notice the starting point of the summation is 1 and the
ending point of the summation is n. Our element is x in this scenario, thus our summation can be written as

n∑
x=1

x .

Theorem 2.6 (Distributive Property of Summations)

For all real constants k, ∑
k · f(x) = k

∑
f(x).
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Example 2.7

Evaluate
5∑

x=1

3 · x!

(x− 1)!
.

Solution. By the Distributive Property of Summations,

5∑
x=1

3 · x!

(x− 1)!
= 3

5∑
x=1

x!

(x− 1)!
.

Notice x!
(x−1)! = x. Thus,

3

5∑
x=1

x!

(x− 1)!
= 3

5∑
n=1

x.

∑5
x=1 x = 1 + 2 + 3 + 4 + 5 = 15. Therefore,

3

5∑
x=1

x = 3 · 15 = 45 .

Theorem 2.8 (Commutative Property of Summations)

For functions f(x) and g(x), ∑
(f(x)± g(x)) =

∑
f(x)±

∑
g(x).

Summations simplify an expression a lot, and make it easier and more convenient to work with.

Exercise 2.9. Simplify ∑
(x + 1)2 −

∑
x2.

Exercise 2.10. Compute the sum
∞∑
k=1

k2

2k
.

§3 Arithmetic Sequences and Series

Definition 3.1 (Arithmetic Sequence) — An arithmetic sequence is a sequence of numbers in which each
term is given by adding a fixed value to the previous term.

For example, −2, 1, 4, 7, 10, . . . is an arithmetic sequence because each term is three more than the previous
term. In this case, 3 is called the common difference of the sequence. More formally, an arithmetic sequence
an is defined recursively by a first term a1 and an = an−1 + d for n ≥ 2, where d is the common difference.
Explicitly:
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Theorem 3.2 (Terms of an Arithmetic Sequence)

The nth term in an arithmetic sequence is described

an = a1 + d(n− 1),

where an is the nth term, a1 is the first term, and d is the difference between consecutive terms.

Theorem 3.3 (Sum of an Arithmetic Sequence)

The sum of the first n terms of an arithmetic sequences is

sn =
n

2
(a1 + an) =

n

2
(2a1 + (n− 1)d).

Proof. We can prove this with induction, which will not be taught or explained in this handout.

The following formulas are a direct consequence of the aforementioned theorems.

Corollary 3.4 (Sum of First n Positive Integers)

For all positive integers n,

1 + 2 + 3 + . . . + n =
n(n + 1)

2
.

Corollary 3.5 (Sum of First n Even Integers)

For all positive integers n,
2 + 4 + . . . + 2n = n(n + 1).

Corollary 3.6 (Sum of First n Odd Integers)

For all positive integers n,
1 + 3 + 5 + . . . + (2n− 1) = n2.

Example 3.7 (AIME I 2005/2)

For each positive integer k, let Sk denote the increasing arithmetic sequence of integers whose first term is 1
and whose common difference is k. For example, S3 is the sequence 1, 4, 7, 10, . . . . For how many values of k
does Sk contain the term 2005?

Solution. Suppose that the nth term of the sequence Sk is 2005. Then 1 + (n− 1)k = 2005 =⇒ k(n− 1) =
2004 = 22 · 3 · 167. Because k when multiplied by an integer is equal to 2004, in order words we can say that k is
a divisor/divides 2004. By the formula for the number of divisors, there are (2 + 1)(1 + 1)(1 + 1) = 12 divisors of
22 · 31 · 1671.
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Example 3.8 (AIME II 2011/3)

The degree measures of the angles in a convex 18-sided polygon form an increasing arithmetic sequence
with integer values. Find the degree measure of the smallest angle.

Solution. The average angle in an 18-gon is 160◦. In this arrangement, the average is equivalent to the middle,
so the center two terms of the succession average to 160◦. In this manner for some certain (the grouping is
expanding and hence non-consistent) whole number d, the center two terms are (160− d)◦ and (160 + d)◦. Since
the progression is 2d, the last term of the arrangement is (160 + 17d)◦, which is under 180◦, since the polygon
is raised. This gives 17d < 20, so the lone appropriate positive whole number d is 1. The initial term is then
(160− 17)◦ = 143 .

Example 3.9 (AIME I 2012/2)

The terms of an arithmetic sequence add to 715. The first term of the sequence is increased by 1, the second
term is increased by 3, the third term is increased by 5, and in general, the kth term is increased by the kth
odd positive integer. The terms of the new sequence add to 836. Find the sum of the first, last, and middle
terms of the original sequence.

Solution. If the sum of the original sequence is

n∑
i=1

ai then the sum of the new sequence can be expressed as

n∑
i=1

ai + (2i − 1) = n2 +
n∑

i=1

ai. Therefore, 836 = n2 + 715 =⇒ n = 11. Now the middle term of the original

sequence is simply the average of all the terms, or 715
11 = 65, and the first and last terms average to this middle

term, so the desired sum is simply three times the middle term, or 195 .

Example 3.10 (AMC 8 2015/18)

An arithmetic sequence is a sequence in which each term after the first is obtained by adding a constant to
the previous term. Each row and each column in this 5× 5 array is an arithmetic sequence with five terms.
What is the value of X?

X

17 81

1 25

(A) 21 (B) 31 (C) 36 (D) 40 (E) 42

Solution. The middle term of the first row is 25+1
2 = 13 since the middle number is just the average in an

arithmetic sequence. Similarly, the middle of the bottom row is 17+81
2 = 49. Applying this again for the middle

column, the answer is 49+13
2 = 31 .
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Exercise 3.11 (AHSME 1969/33). Let Sn and Tn be the respective sums of the first n terms of two
arithmetic series. If Sn : Tn = (7n + 1) : (4n + 27) for all n, the ratio of the eleventh term of the first series
to the eleventh term of the second series is:

(A) 4 : 3 (B) 3 : 2 (C) 7 : 4 (D) 78 : 71 (E) undetermined

Exercise 3.12 (AIME 1999/1). Find the smallest prime that is the fifth term of an increasing arithmetic
sequence, all four preceding terms also being prime.

§4 Geometric Sequences and Series

Definition 4.1 (Geometric Sequence) — A geometric sequence is a sequence of numbers in which each
term is a fixed multiple of the previous term.

For example: 1, 2, 4, 8, 16, 32, . . . is a geometric sequence because each term is twice the previous term. In
this case, 2 is called the common ratio of the sequence. More formally, a geometric sequence may be defined
recursively by:

an = r · an−1, n > 1,

with a fixed first term a1 and common ratio r. Using this definition, the nth term has the closed-form:

an = a1 · rn−1.

Theorem 4.2 (Sum of a Finite Geometric Sequence)

The sum of the first n terms of a geometric sequence is given by

Sn = a1 + a2 + · · ·+ an = a1 ·
rn − 1

r − 1
,

where a1 is the first term in the sequence, and r is the common ratio.

Proof. Let
Sn = a1 + a2 + · · ·+ an.

Thus, the equation can be re-written as

Sn = a1 + a1r + · · ·+ a1r
n−1.

Multiplying both sides by r,
Snr = a1r + a1r

2 + · · ·+ a1r
n.

Subtracting the original equation from this equation,

Snr − Sn = a1r
n − a1.

Factoring Sn out of the expression on the LHS and a1 out of the expression on the RHS,

Sn(r − 1) = a1(r
n − 1).

Isolating Sn,

Sn = a1 ·
rn − 1

r − 1
.

8
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Definition 4.3 (Infinite Geometric Sequence) — An infinite geometric sequence is a geometric sequence
with an infinite number of terms.

If the absolute value of the common ratio is less than 1, the terms will approach 0 and the sum of the terms will
approach a fixed limit. We say that the sum of the terms of this sequence is a convergent sum.

Theorem 4.4 (Sum of an Infinite Geometric Sequence)

The general formula for the sum of such a sequence is

S =
a1

1− r
.

Proof. Let
S = a1 + a2 + · · · .

Re-writing the equation,
S = a1 + a1r + · · · .

Multiplying both sides by r,
Sr = a1r + a1r

2 + · · · .

Subtracting this equation from the original equation,

S − Sr = a1.

Factoring S out of the expression on the LHS,

S(1− r) = a1.

Isolating S,

S =
a1

(1− r)
.

For instance, the series 1 + 1
2 + 1

4 + 1
8 + . . ., sums to 2.

Exercise 4.5. Find the value of
1

3
+

1

9
+

1

27
+ . . .

One common instance of summing infinite geometric sequences is the decimal expansion of most rational numbers.
For instance, 0.33333 . . . = 3

10 + 3
100 + 3

1000 + 3
10000 + . . . has first term a0 = 3

10 and common ratio 1
10 , so the

infinite sum has value S =
3
10

1− 1
10

= 1
3 , just as we would have expected.

Example 4.6 (AIME II 2002/11)

Two distinct, real, infinite geometric series each have a sum of 1 and have the same second term. The third

term of one of the series is 1/8, and the second term of both series can be written in the form
√
m−n
p , where

m, n, and p are positive integers and m is not divisible by the square of any prime. Find 100m + 10n + p.

9
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Solution. Suppose the second term of the two distinct, real, infinite geometric series is x. Then, the first term is
8x2 common ratio is 1

8x for one of the series. Therefore, by the sum of an infinite geometric sequence,

1 =
8x2

1− 1
8x

=⇒ 64x3 − 8x + 1 = 0

=⇒ (4x− 1)(16x2 + 4x− 1) = 0

=⇒ x =
1

4
,
−1 +

√
5

8
,
−1−

√
5

8
.

Because the second term of both series is written in the form
√
m−n
p , the only applicable solution is x =

√
5−1
8 .

Thus, our answer is 518 .

Example 4.7 (AIME II 2011/5)

The sum of the first 2011 terms of a geometric sequence is 200. The sum of the first 4022 terms is 380. Find
the sum of the first 6033 terms.

Solution. The sum of the first 2011 terms is 200, second 2011 is 180, and so the ratio of the second 2011 terms
to the first 2011 terms is 9

10 . Following the same pattern, the sum of the third 2011 terms is 9
10 ∗ 180 = 162.

Thus, the sum of the first 6033 terms is 200 + 180 + 162 = 542 .

Example 4.8 (AIME II 2012/2)

Two geometric sequences a1, a2, a3, . . . and b1, b2, b3, . . . have the same common ratio, with a1 = 27, b1 = 99,
and a15 = b11. Find a9.

Solution. Let r be the common ratio of the two geometric sequences. Then, we see that a1 · r14 = b1 · r10 =⇒
r4 = 99

27 = 11
3 . Thus, a9 = a1 · r8 = a1 · (r4)2 = 27 ·

(
11
3

)2
= 27 · 1219 = 363 .

Example 4.9 (AIME I 2016/1)

For −1 < r < 1, let S(r) denote the sum of the geometric series

12 + 12r + 12r2 + 12r3 + · · · .

Let a between −1 and 1 satisfy S(a)S(−a) = 2016. Find S(a) + S(−a).

Solution. By infinite geometric series, S(a) = 12
1−a and S(−a) = 12

1+a . So,

S(a)S(−a) =

(
12

1− a

)(
12

1 + a

)
=

144

1− a2
= 2016.

Notice

S(a) + S(−a) =
12

1− a
+

12

1 + a
=

24

1− a2
,

and so the answer is 2016
6 = 336 .

10
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Exercise 4.10 (AIME II 2002/3). It is given that log6 a+ log6 b+ log6 c = 6, where a, b, and c are positive
integers that form an increasing geometric sequence and b− a is the square of an integer. Find a + b + c.

Exercise 4.11 (AIME I 2009/1). Call a 3-digit number geometric if it has 3 distinct digits which, when
read from left to right, form a geometric sequence. Find the difference between the largest and smallest
geometric numbers.

§5 Arithmetico-Geometric Sequence

Definition 5.1 (Arithmetico-Geometric Sequence and Series) — An arithmetico-geometric series is the
sum of consecutive terms in an arithmetico-geometric sequence defined as:

tn = angn,

where an and gn are the nth terms of arithmetic and geometric sequences, respectively.

Example 5.2

Compute the sum
∞∑
k=1

k

4k
.

Solution. Let the sum be S. Then

S =
1

4
+

2

42
+

3

43
+ . . . ,

and if we divide by 4,
S

4
=

1

42
+

2

43
+ . . . .

Note that if we subtract these in a special way (by subtracting the ones with common denominators), we get

3S

4
=

1

4
+

1

42
+

1

43
+ . . . =

1
4

1− 1
4

=
1

3
,

so S = 4
9 .

Theorem 5.3 (Sum of a Finite Arithmetico-Geometric Sequence)

The sum of the first n terms of an arithmetico-geometric sequence is

angn+1

r − 1
− x1

r − 1
− d(gn+1 − g2)

(r − 1)2
,

where d is the common difference of an and r is the common ratio of gn. We can also write it as

angn+1 − x1 − drSg

r − 1
,

where Sg is the sum of the first n terms of gn.

11
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§6 Telescoping Series

Definition 6.1 (Telescoping Series) — A telescoping series is a series whose partial sums eventually only
have a fixed number of terms after cancellation.

The cancellation technique, with part of each term canceling with part of the next term, is known as the method
of differences.

Example 6.2

Find the value of
1

2
× 2

3
× 3

4
× 4

5
× 5

6
× 6

7
.

Solution. Performing cancellations, we arrive at
1

7
.

The method of splitting the fraction is known as partial fraction decomposition.

Theorem 6.3 (Partial Fraction Decomposition)

The method is detailed below:

• Factor the denominator

• Solve the decomposition according to the right form

A few notes on decomposing:

• Linear Factors:
5x + 3

(x + 1)(x + 4)
=

A

x + 1
+

B

x + 4

• Repeated Linear Factors:
2x− 4

(x− 2)(x + 3)2
=

A

x− 2
+

B

x + 3
+

C

(x + 3)2

• Irreducible Quadratic Factors:
2x2 − 3x− 1

(x− 1)(x2 + 9)
=

A

x− 1
+

Bx + C

x2 + 9

Exercise 6.4. Decompose
x2 + x− 5

(x− 2)(x− 1)2
.

Partial Fraction Description is often able to be utilized in Telescoping.

Example 6.5

Find the value of
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ . . .

12
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Solution. If we split 1
n(n+1) , we get

1

n
− 1

n + 1
.

Thus,
1

1
− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ . . . = 1 .

Example 6.6

Find the value of (
1− 1

22

)(
1− 1

32

)(
1− 1

42

)
. . .

Solution. Note that

1− 1

n2
=

n2 − 1

n2
=

(n− 1)(n + 1)

n2
.

Thus,
1 · 3
22
· 2 · 4

32
· 3 · 5

42
· 4 · 6

52
· . . . =

1

4
· 2 =

1

2
.

Example 6.7 (Stanford 2011)

Evaluate the sum ∑
n≥1

7n + 32

n(n + 2)
·
(

3

4

)n

.

Solution. Note that
7n + 32

n(n + 2)
=

16

n
− 9

n + 2
.

The sum telescopes according to the fact that 9 = (3/4)2 · 16:

∑
n≥1

16

n

(
3

4

)n

− 16

n + 2

(
3

4

)n+2

.

The trailing terms in the sum tend to zero as n→∞ so the answer is 16
1 ·

3
4 + 16

2 ·
9
16 = 12 + 9

2 = 33
2 .

Exercise 6.8 (USAMTS 3/4/11). Determine the value of

S =

√
1 +

1

12
+

1

22
+

√
1 +

1

22
+

1

32
+ · · ·+

√
1 +

1

19992
+

1

20002

Exercise 6.9 (AIME I 2002/4). Consider the sequence defined by ak =
1

k2 + k
for k ≥ 1. Given that

am + am+1 + · · ·+ an−1 =
1

29
, for positive integers m and n with m < n, find m + n.

13
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§7 Recursive Sequences

Definition 7.1 (Recursive Sequence) — A recursive sequence is a sequence defined upon previous terms.

Example 7.2

The most famous example is the Fibonacci Sequence:

Fn = Fn−1 + Fn−2,

where F0 = F1 = 1.

Definition 7.3 (Base Case) — A base case is one of the first few terms of a sequence, to give it an initial
value.

For example, in the sequence an = an−1 + an−2, a0 = a1 = 1 would be the base cases.

Definition 7.4 (Closed Form) — The closed form, also known as the explicit form, of a recursive
sequence is when we do not use previous terms to define the next term.

Example 7.5

Find the closed form of
an = an−1 + 1,

where a0 = 1.

Solution. The first few terms of the sequence are

a0 = 1, a1 = 2, a2 = 3.

This pattern is very obviously an = n + 1.

Induction will be required to prove this solution holds forever, which again, will not be taught in this
handout.

Example 7.6 (AMC 10A 2000/6)

The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, . . . starts with two 1s, and each term afterward is the sum of its
two predecessors. Which one of the ten digits is the last to appear in the units position of a number in the
Fibonacci sequence?

(A) 0 (B) 4 (C) 6 (D) 7 (E) 9

Solution. Note that any digits other than the units digit will not affect the answer. So to make computation
quicker, we can just look at the Fibonacci sequence in mod 10:

1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, . . .

The last digit to appear in the units position of a number in the Fibonacci sequence is 6 =⇒ C .

14
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Example 7.7 (AMC 12 A 2007/25)

Call a set of integers spacy if it contains no more than one out of any three consecutive integers. How many
subsets of {1, 2, 3, . . . , 12}, including the empty set, are spacy?

Solution. Let Sn denote the number of spacy subsets of {1, 2, 3, . . . , n}. Then, S0 = 1, S1 = 2, S2 = 3.

The spacy subsets of Sn+1 either has or does not have n + 1. There are Sn spacy subsets that do not contain
n + 1, and Sn−2 spacy subsets that do contain n + 1 because if you take out n + 1 from any spacy subset, the
max element is n− 2, and are possible constructions from Sn−2.

So, we can form the recursion
Sn+1 = Sn + Sn−2.

Bashing to S12, we find that the number of subsets of {1, 2, 3, . . . , 12}, including the empty set, that are spacy is
129 .

Exercise 7.8. Derive a closed form for the Fibonacci numbers defined by F1 = F2 = 1 and Fn = Fn−1+Fn−2.

Exercise 7.9 (AIME I 2006/11). A collection of 8 cubes consists of one cube with edge-length k for each
integer k, 1 ≤ k ≤ 8. A tower is to be built using all 8 cubes according to the rules:

• Any cube may be the bottom cube in the tower.

• The cube immediately on top of a cube with edge-length k must have edge-length at most k + 2.

Let T be the number of different towers that can be constructed. What is the remainder when T is divided
by 1000?

For more material on recursion, view Euclid’s Orchard’s Recursion in the AMC and AIME Handout and/or
Primeri’s Recursion Handout.

§8 Problems

Problem 8.1. Consider the arithmetic sequence with first term −500 and common difference 7. Find the 200th
term in the sequence.

Problem 8.2. Consider the arithmetic sequence with first term −500 and common difference 7. Find k if
ak = 25.

Problem 8.3. Find the value of
1 + 2 + 3 + . . . + 100.

Problem 8.4. Find the next term of 2, 8, 32, 128, . . .

Problem 8.5. What is a7, if
an = an−1 + an−2,

and a0 = a1 = 2?

15

https://www.alphademic.org/uploads/1/3/1/7/131709482/recursion_in_the_amc_and_aime.pdf
https://www.primeri.org/recursion/


freeman66 and nikenissan (February 1, 2021) Sequences and Series in the AMC and AIME

Problem 8.6 (AMC 10 B 2002/19). Suppose that {an} is an arithmetic sequence with

a1 + a2 + · · ·+ a100 = 100 and a101 + a102 + · · ·+ a200 = 200.

What is the value of a2 − a1?

(A) 0.0001 (B) 0.001 (C) 0.01 (D) 0.1 (E) 1

Problem 8.7 (AMC 10 B 2004/10). A grocer makes a display of cans in which the top row has one can and
each lower row has two more cans than the row above it. If the display contains 100 cans, how many rows does
it contain?

(A) 5 (B) 8 (C) 9 (D) 10 (E) 11

Problem 8.8 (AMC 10 A 2006/19). How many non-similar triangles have angles whose degree measures are
distinct positive integers in arithmetic progression?

(A) 0 (B) 1 (C) 59 (D) 89 (E) 178

Problem 8.9 (AMC 10 B 2016/16). The sum of an infinite geometric series is a positive number S, and the
second term in the series is 1. What is the smallest possible value of S?

(A) 1+
√
5

2 (B) 2 (C)
√

5 (D) 3 (E) 4

Problem 8.10 (AMC 10 A 2020/21). There exists a unique strictly increasing sequence of nonnegative integers
a1 < a2 < . . . < ak such that

2289 + 1

217 + 1
= 2a1 + 2a2 + . . . + 2ak .

What is k?

(A) 117 (B) 136 (C) 137 (D) 273 (E) 306

Problem 8.11 (AIME 1984/1). Find the value of a2 + a4 + a6 + a8 + . . . + a98 if a1, a2, a3 . . . is an arithmetic
progression with common difference 1, and a1 + a2 + a3 + . . . + a98 = 137.

Problem 8.12 (AIME 1989/7). If the integer k is added to each of the numbers 36, 300, and 596, one obtains
the squares of three consecutive terms of an arithmetic series. Find k.

Problem 8.13 (AIME II 2004/9). A sequence of positive integers with a1 = 1 and a9 + a10 = 646 is formed so
that the first three terms are in geometric progression, the second, third, and fourth terms are in arithmetic
progression, and, in general, for all n ≥ 1, the terms a2n−1, a2n, a2n+1 are in geometric progression, and the
terms a2n, a2n+1, and a2n+2 are in arithmetic progression. Let an be the greatest term in this sequence that is
less than 1000. Find n + an.

Problem 8.14 (AIME II 2005/3). An infinite geometric series has sum 2005. A new series, obtained by squaring
each term of the original series, has 10 times the sum of the original series. The common ratio of the original
series is m

n where m and n are relatively prime integers. Find m + n.

Problem 8.15 (AIME II 2016/9). The sequences of positive integers 1, a2, a3, ... and 1, b2, b3, ... are an increasing
arithmetic sequence and an increasing geometric sequence, respectively. Let cn = an + bn. There is an integer k
such that ck−1 = 100 and ck+1 = 1000. Find ck.
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Problem 8.16 (Math League HS 2000-2001). Evaluate(
1

22
+

1

32
+

1

42
+ · · ·

)
+

(
1

23
+

1

33
+

1

43
+ · · ·

)
+

(
1

24
+

1

34
+

1

44
+ · · ·

)
+ · · · .

More formally, what is the sum of all fractions of the form 1
(m+1)(n+1) , where m and n range over positive

integers?

Problem 8.17 (Purple Comet HS 2004). Define ak = (k2 + 1)k! and bk = a1 + a2 + a3 + · · ·+ ak. Let

a100
b100

=
m

n

where m and n relatively prime natural numbers. Find n−m.

Problem 8.18 (OMO Fall 2013/24). The real numbers a0, a1, . . . , a2013 and b0, b1, . . . , b2013 satisfy an =
1
63

√
2n + 2 + an−1 and bn = 1

96

√
2n + 2− bn−1 for every integer n = 1, 2, . . . , 2013. If a0 = b2013 and b0 = a2013,

compute
2013∑
k=1

(akbk−1 − ak−1bk) .

Problem 8.19 (Putnam 2013/B1). For positive integers n, let the numbers c(n) be determined by the rules
c(1) = 1, c(2n) = c(n), and c(2n + 1) = (−1)nc(n). Find the value of

2013∑
n=1

c(n)c(n + 2).

Problem 8.20 (AoPS). If a, b, and c form an arithmetic progression, and

a = x2 + xy + y2,

b = x2 + xz + z2,

c = y2 + yz + z2,

where x + y + z 6= 0, prove that x, y, and z also form an arithmetic progression.
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§A Appendix A: List of Theorems and Definitions

List of Theorems

2.6 Theorem - Distributive Property of Summations 4

2.8 Theorem - Commutative Property of Summations 5

3.2 Theorem - Terms of an Arithmetic Sequence 6

3.3 Theorem - Sum of an Arithmetic Sequence 6

4.2 Theorem - Sum of a Finite Geometric Sequence 8

4.4 Theorem - Sum of an Infinite Geometric Sequence 9

5.3 Theorem - Sum of a Finite Arithmetico-Geometric Sequence 11

6.3 Theorem - Partial Fraction Decomposition 12

List of Definitions

2.1 Definition - Sequence 4

2.2 Definition - Partial Sum 4

2.3 Definition - Series 4

2.4 Definition - Summation Notation 4

3.1 Definition - Arithmetic Sequence 5

4.1 Definition - Geometric Sequence 8

4.3 Definition - Infinite Geometric Sequence 9

5.1 Definition - Arithmetico-Geometric Sequence and Series 11

6.1 Definition - Telescoping Series 12

7.1 Definition - Recursive Sequence 14

7.3 Definition - Base Case 14

7.4 Definition - Closed Form 14
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