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Abstract

We show that, for every set of n points in a 2-dimensional unit square, there is an empty
axis-parallel box of volume at least % as n — oo. This improves upon the previous best
lower bound of %047 as n — o0.

1 Introduction

In this paper, we find, for every set P of n points in a 2-dimensional unit square, a lower bound for
the area of the largest axis-parallel box in a unit square that does not contain any of the n points.

Definition 1 (Box). A box is a Cartesian product of open intervals. Given a set P, We say that
a bozx is empty if BN P = ().

For the 2-dimensional case (i.e., a rectangle), we take two Cartesian products.

Let m(P) (called the dispersion of P) be the volume of the largest empty box contained in
[0,1]2. Let ma(n) be the largest number such that every n-point set P C [0,1]? admits an empty
box of volume at least ma(n). Alternatively, ma(n) = minm(P), where the minimum is taken over
all sets P.

Several works found ma(n) to be at least ——, including [4, 8, 14]. The first non-trivial bound

n+1’
of ma(n) > ﬁ was observed by Dumitrescu and Jiang [9]. Aistleitner, Hinrichs, and Rudolf [2]
then bounded ¢y > i for
cy = li_>m nma(n),

and Bukh and Chao [5] then improved upon this to co > 1.5047, the proof of which is reproduced in
Appendix B. Note that the upper bound of ¢ < 1.8945 was achieved by Kritzinger and Wiart [11].
Other algorithms focusing on the planar problem have been proposed over the years, including |1,
3,6, 7, 13].

The motivation for estimating ma(n) (and consequently c) comes from several independent
subjects. Rote and Tichy [14] were motivated by the relations to e-nets in discrete geometry and
the relations to discrepancy theory. The dispersion also arose in the problem of estimating rank-one
tensors [4, 10, 12] and in Marcinkiewicz-type discretizations [16]. Rank-one tensors in particular
yield real-world applications in machine learning, engineering, and areas of physics (e.g., fluid
mechanics, electrodynamics, and general relativity). Shamos’ work on the empty circle problem is
motivated by the facilities location problem, but one in which a new facility should be positioned
as far away from other facilities as possible (e.g. to avoid polluting the nearby area or to avoid
competition) [15]. This same use-case is applicable to the empty rectangle problem addressed in
this paper.



2 Methodology

We adopt the notation of Bukh and Chao [5] (for 2-dimensional boxes) as below.

Let P denote an n-point set in [0, 1]> and denote by P — t the set of points shifted by ¢ € R2.
Let § > 0 be a parameter to be chosen later. We use the same strategy as in [5] of considering a
random shift ¢ € [§,1 — §]? as a reference point which is the center of a shifted box B = [-4, ]2
To find an empty box with large area, we shave a side off of B for every point in P’ = (P —t) N B.
For each point p € P’ there is a coordinate of maximum absolute value, which we call dominant
for p. We will shave off the dominant coordinate for p, since the shaving off the largest coordinate
generally results in shaving off the least area. Writing the coordinates of p as p = (p1,p2), define

a; := min {—pl- : 4 is dominant for p € P" and p; < 0} ,
b; := min {—}—pl- : i is dominant for p € P/ and p; < 0} .

If the set in the definition of a; or b; is empty, then we set a; = § or b; = 4. Note that the
box B’ := (—a1,b1) X (—asg,bs) is precisely the box that results when we shave off the dominant
coordinate for each point p € P’. Hence B’ is disjoint from P — ¢t and is contained in B. We can
assume that a;, b; > 0, since if a; = 0 or b; = 0 it must be the case that P — ¢ contains the origin,
equivalently ¢ € P. Such shifts ¢ have density 0 in the set of possible shifts ¢ € [§,1 — 6]? and hence
can be ignored.

A key lemma in [5] (Lemma 4 in the article) is the following (where box and volume correspond
to rectangle and area in 2D space):

Lemma 2. The volume of B' is at least vol(B) - [ [, pr 1/ %.

The proof of Lemma 2 uses the AM-GM inequality to lower bound each side length a; + b; of
B’ in terms of the product of the ¢*°-norms of the points in P — ¢ (see Appendix A). Our main
observation is that often this inequality can be improved because for a typical shift ¢, one would
not expect a; and b; to be exactly equal, hence we have a; + b; > 2v/a;b;. How much multiplicative

improvement we get over the AM-GM inequality depends on how far apart a; and b; are. Letting
a; b;

K; = max {F? ;} be the eccentricity parameter for coordinate i, then we have

14+ k;

Cp >
a’L+Z_ \//i»Z

CLZ‘bZ‘.

Note that if x; = 1, then we recover the AM-GM inequality. We use this refined inequality to
improve Lemma 2 and yield a stronger lower bound for cs.

3 Optimizing B’

Let the average area of boxes B’ over all choices of ¢ be A. Since [5] proves the maximum area is
at least 2, with equality when all vol B’ = €2 it follows that A > 2. For each reference point ¢,

consider ¢ and its translates in each of the 4 cardinal directions by ¢ = % for k = —g’g‘ > g ~
0.350.

Definition 3 (Stable). Call a box stable if all four of t’s translates lie within B’, and call a box
unstable otherwise.

Lemma 4. Define an actual point as one of the n points in set P. In an unstable box B’, the

reference point must be within k:\/% of one of the n actual points.



Proof. Without loss of generality, let a; < e.

ba
—ai bl
—<_
€
Clearly, the actual point forming the x = —a; side of B’ must lie on z = —aj, and it must be
contained between y = —x and y = x or else coordinate 2 would be dominant. As such, the actual
point can be at most ey/2 = k\/% away from the reference point as desired. O

Lemma 5. FEither A > @, or the ratio of stable boxes over all boxes is greater than 0.2.

Proof. Consider an unstable box B’. By Lemma 4, the region in which the reference point can lie

must be within a circle of radius k\/% around at least one of the n actual points, which gives us

an area of at most
2rk?

n

-n = 27k?,

implying that the ratio of unstable boxes is less than 27k?.

o If 27k% > 0.8, then A > 0.8 - 35 %, improving the lower bound on ¢y given in [5].

2mn

o If 27k? < 0.8, then k < 0.357 and the ratio of stable boxes is at least 1 — 27k > 0.2.

Note that the former case results in an average area (and therefore maximum area) of at least %,

which exceeds the improvement of % we aim to show in this paper. ]

4 Stable Box Analysis

By Lemma 5, we have a substantial ratio (i.e., greater than 0.2) of stable boxes. Consider one of
those boxes B’ = (—ay,b1) X (—ag,be). Without loss of generality, let a; < ay and b; = k;a; for
i=1,2.



by

—aq € b1

v

Translate the origin from the reference point a distance ¢ in the —a; direction. Let a}, b} denote the
new aj, by when using the new origin. All equations presented below use the untranslated reference
point as the origin.

Lemma 6. The only set S of points that can affect ay,b| are the ones existing in:
e the region Ry between y =z and y = x + € lying above y = ba, or
o the region Ry between y = —x and y = —x — € lying below y = —as.

Proof. Note that there cannot be any points within the box — otherwise, a;, b; would be smaller.
Define C as the following groups of points:

bla ) b27 )7

( (

o (—00,—a1) x (bz,0),
(- )
( (o0

00, —aj) X (—o0, —ag), or

[ ] b17 ) —(12)

Points in C' cannot affect the box, since the dominant coordinate of any points in C' are larger
than the current choice of a;, b; for any origin within the box. Points lying above or below both
y=x4¢ and y = —x — ¢ are dominant for coordinate 2 after the change in origin, so they will not
affect af,b}. Points lying to the left or right both y = z and y = —z, because they are dominant
for coordinate 1 before the change in origin, so they cannot exist for a;,b; to exist. As such, only
points not in C' lying between y = x and y = x + € or between y = —z and y = —x — € can affect
a’, b, which yields the desired result. O



The point that yields the smallest b is either the leftmost point in Ry, (by — €,b2), or the
leftmost point point in R, (ag — &, —az). Since ay — & < by — €, we have that the smallest value of
b} is ag — € + &€ = ag, implying that

W

K = > 1.

a, a—e¢
Given the minimum and maximum bounds on vol B’ attained in Theorems 1 and 2 found in [5],
we must have that vol B’ is asymptotic to % Since € is O (ﬁ), it follows that the two sides
are also at least O (ﬁ), since otherwise € would be larger than the sides for sufficiently large n.
Furthermore, the two sides must be exactly O <ﬁ> for vol B’ to be asymptotic to %

Lemma 7. Both sides of a stable box have sides at most %EB,.

Proof. Since vol B’ = (a1 4 b1)(a2 + ba) and both sides exceed 2¢, the desired follows. O

Note that % is asymptotic to %

The side lengths are a; + b; = (1 + k;)a; (i.e. a;,b; are also asymptotic to ﬁ), so it follows that

vol B’
2¢2

SO

a;, b; < ce for ¢ = > 1, where i = 1,2. Say vol B’ = g for some constant 3. Then ¢ = 2%,

/ as a c B
Ky = > > = .
Y ai—e T ar—e T =1 B—2k2

Since 3 < ¢ & 1.505 (otherwise the bound on vol B’ can already be improved), we have that

C2 C2

/
K1 > >
1 02*2]{32 62_2< Cc2

5 ~ 1.195.

3.5

5 Improving vol B’

Lemma 8. Let a shift t; € [§,1—6]? induce a box Bl = (—agi), bgi)) X (—aéi), bgi)), where ty describes
some initial reference point and t; for i = 1,2,3,4 describes the four translates of that reference
point by € in the four cardinal directions. Define

‘ (&) 109 , (@) ()
/152) = max { a(li) , bb) } , ng) = max { a?@.) , b%@.) }
by’ aj by’ ay

to be the eccentricity parameters for coordinates 1 and 2, respectively, where i =0,...,4, and define

T, [1+67) (1455
n

R = g | - :
i=0 21/r " 21/ k)
as the total eccentricity. Then
vol(B') > vol(B) - " - H \/ %
- 0
peEP’!



Proof. The proof of Lemma 8 is analogous to that of Lemma 2:

vol B; = (ay” +vi")(a +1)

(i) (@)
Slte 1t Wgubgz))(agubg»

1+H<'> 1+ﬁ2 297 ] /||p||
2/k{) 24/KY PP

so we have

4 /

> 1 B;

max vol B > %O’
K3

(26)? H\/W

peP’!
as desired. O

Note that the total eccentricity £ = k(t) depends on the shift ¢, where we set x(t) = 0 for
t¢ 5,102

We set the same weight functions F' as in Theorem 1 and Theorem 3 of [5]. As described in
the proof of Theorem 1 and Theorem 3 of [5], by Lemma 2 the problem of maximizing vol(B’)
as a function of t € [§,1 — §]? is equivalent to minimizing izpepftF(p). Using our notion of
eccentricity in Lemma 8, in order to maximize vol(B’) we want to instead minimize the function

—k(t) + ip;tF(p).

Since k(t) > 0 for all ¢, and for a positive density of ¢t we have that x(¢) is uniformly bounded away
from 0, we can guarantee the existence of ¢ € [6,1 — 6]? such that B’ has a larger volume than was
guaranteed in [5].

We now present the details of this argument. We integrate the function

)+ S F)

peP—t

we want to minimize over all t € R? and compute

1 1
/tERQ —w(t)+7 D Flp) | di=— /tERZ s(t)dt + 5 /teRz > Fp)dt

pEP—t pEP—t
1
:—/ /-a(t)dt+/ > F(p)dt
te[6,1-4]? 4 Jiere peP—t (3)
= — t)dt + — / F(z)dx
/te[é,lé} ;;7 z€R?

M
= —/ K(t)dt + —,
te[5,1-0]2 4



where M :=n [ _p F(z)dz. Observe that the term — fte[&l_ép k(t)dt in Eq. (3) represents the

multiplicative improvement on vol(B’) we achieve over [5]. By the Pigeonhole Principle, there exists
t € [0,1 — 4]? such that

Jicisa_ge 5(t) dt M
—k(t) + 1 Z F(p) < - [ii _(5]25)2 + 4(1 —20)2

Defining

o Jiesa—g2 (1) dt
avg — (1 o 26)2 Y

we conclude by Lemma 8 that for this choice of ¢ we have

vol(B') > vol(B) -exp | k(t) — i Z F(p)
peEP’

M
> VOI(B) - exp </€an — 4(1_25)2)

Ro M
> ehave . 0 ).
= neXp<4(1—25)2>

By the proof of Theorem 3 in [5], we may take n — oo to find

4
cg > Ve . <(1 + 64)) .
e
At least one of the /igj) terms (for i = 1,2 and j =0, ...,4) is greater than 1.195 — without loss of
generality, let it be mgl). Then

1)
KZ%ID Lt

0 ~ 0.0007932,
1
24/ Ky

(1)
with equality when all other terms are 1 (the minimum). Taking a constant function k = % In (%) ,
24/ Ky

it follows that
(1—-26)%k

> 2
fave = 71 95)2

improving ¢y to 0907932 .1 5047 ~ 1.5059.

> 0.0007932,
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A  Proof of Lemma 2

We repeat the proof from [5].
Fix any coordinate ¢ = 1, 2.

e Suppose first that the two sets in the definitions of a;, b; are non-empty. Then if p,q € P —t
are points such that a; = —p;, b; = ¢;, we have by the AM-GM inequality that

a; +b; > Vaibi \/HPHOO _ \/HQIIOO (4)
26 § 4 5

e Suppose next that only one of the two sets are non-empty. Without loss of generality, let
a; = —p; for some p € P —t and b; = ¢ (the other case is symmetric). Then by a similar
application of the AM-GM inequality, we obtain

ai+b; _ |lpll
> =2
26 1) (5)

Taking the product of Eq. (4) and Eq. (5) as appropriate over ¢ = 1,2, and noting that every point
has only one dominant coordinate, we have

d
vol B/ — H +b > 25dH /HPH

peP’!

B Proof of o > 1.5047

We repeat the proof from [5].

Let Ry > 0 be a parameter such that Ry < n, and let § = 3/ %. Let f: [0, Ry] — RT be some

weight function. We adopt the convention that f(R) =0 if R > Ry.

Let B be a square of area % centered at the origin, i.e., B := [~§,d]2. Using f, we define a
function on R? by F(z) := f(4r%n) for HxH = r. Because f vanishes outside [0, Rp], the function
F vanishes outside B. Define M :=n [, F g F () dz, and note that

5 Ro
M = / (2%nr®=td - f(2%%n)) dr = f(R)dR
r=0

/GR Z

peP—t

Because

p)dt = Z/tR2 p—t)dt = Z z)de =M

peP a:G]R2
it follows by the Pigeonhole Principle that there exists t € [§,1 — 6]? such that
M
Flp) < —7—=
peEP—t

for otherwise f[5 162 Zpep_t F(p)dt > M. Tt suffices to find a large box inside B that is empty
with respect to the set P’ := (P —t)N B, for then we may obtain an empty box of the same volume
inside [0,1]? after translating by ¢+ — Lemma 2 is exactly this.



B.1 Simple weight function (proof of Theorem 1 in [5])

We choose Ry = 2d and f(R) =1In %. The condition Ry < n is satisfied unless 2d < n, but in that
case Theorem 1 in [5] holds vacuously.

With this choice of Ry and f, we obtain M = fORO f(R)dR = Ry and F(x) = dlog ﬁ on B.
By Lemma 2, we have b

VolB’>eXp< Z gH i >

peP!
Ry 1
=l 2 o)
p
R M
= CP\ T4 = 20)2
= Dexp | - !
1- %)
0 1
> Y _
exp (1 - %>2

IV
D
><
e
|
—_
| —_
:"’;
N——

S 1 4 8
“n e Vn)’
where the last two lines come from exp (——) >e (1 - 21).

B.2 Better weight function (proof of Theorem 3 in [5])
By the same token, we may prove Theorem 3 by taking Ry = 3.695,7 = 0.1016, and

Imnfe R<T
f(R) = .
nf T<R<R

With these choices, we obtain M = Ry — T and

Ro M
1B > Qoxp [ -
VOB = e ( 4(1-—26)2>

and taking the limit n — oo, the bound on ¢y follows.
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